• Title/Summary/Keyword: FN3 Module

Search Result 5, Processing Time 0.027 seconds

Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function

  • Nguyen, Khanh Hoang Viet;Dao, Trong Khoa;Nguyen, Hong Duong;Nguyen, Khanh Hai;Nguyen, Thi Quy;Nguyen, Thuy Tien;Nguyen, Thi Mai Phuong;Truong, Nam Hai;Do, Thi Huyen
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.867-879
    • /
    • 2021
  • Objective: Fibronectin 3 (FN3) and immunoglobulin like modules (Ig) are usually collocated beside modular cellulase catalytic domains. However, very few researches have investigated the role of these modules. In a previous study, we have sequenced and analyzed bacterial metagenomic DNA in Vietnamese goats' rumen and found that cellulase-producing bacteria and cellulase families were dominant. In this study, the properties of modular cellulases and the role of a FN3 in unique endoglucanase belonging to glycosyl hydorlase (GH) family 5 were determined. Methods: Based on Pfam analysis, the cellulases sequences containing FN3, Ig modules were extracted from 297 complete open reading frames (ORFs). The alkaline, thermostability, tertiary structure of deduced enzymes were predicted by AcalPred, TBI software, Phyre2 and Swiss models. Then, whole and truncated forms of a selected gene were expressed in Escherichia coli and purified by His-tag affinity column for assessment of FN3 ability to enhance enzyme activity, solubility and conformation. Results: From 297 complete ORFs coding for cellulases, 148 sequences containing FN3, Ig were identified. Mostly FN3 appeared in 90.9% beta-glucosidases belonging to glycosyl hydrolase family 3 (GH3) and situated downstream of catalytic domains. The Ig was found upstream of 100% endoglucanase GH9. Rarely FN3 was seen to be situated downstream of X domain and upstream of catalytic domain endoglucanase GH5. Whole enzyme (called XFN3GH5 based on modular structure) and truncate forms FN3, XFN3, FN3GH5, GH5 were cloned in pET22b (+) and pET22SUMO to be expressed in single and fusion forms with a small ubiquitin-related modifier partner (S). The FN3, SFN3 increased GH5 solubility in FN3GH5, SFN3GH5. The SFN3 partly served for GH5 conformation in SFN3GH5, increased modules interaction and enzyme-soluble substrate affinity to enhance SXFN3GH5, SFN3GH5 activities in mixtures. Both SFN3 and SXFN3 did not anchor enzyme on filter paper but exfoliate and separate cellulose chains on filter paper for enzyme hydrolysis. Conclusion: Based on these findings, the presence of FN3 module in certain cellulases was confirmed and it assisted for enzyme conformation and activity in both soluble and insoluble substrate.

Chitosan surface grafted with fusion protein of FGF-2 and Fibronectin-FGF for tissue regeneration therapy

  • Hwang, Jeong-Hyo;Lee, Jue-Yeon;Kim, Sun-Chul;Jang, Jun-Hyeog;Ku , Young;Chung, Chong-Pyoung;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.231.3-232
    • /
    • 2003
  • The biomedical applications of chitosan have been widely researched. FN mediates its biological effects through binding to the hetero-dimeric transmembrane glycoproteins, integrins, which physically couple the cytoskeleton to the ECM. FN binds to the integrin through a consensus site including the Arg-Gly-Asp (RGD) sequence within tenth type III module (Ruoslahti & Pierschbacher 1987). A short sequence Pro-His-Ser-Arg-Asn (PHSRN) has also been identified as a synergistic motif within ninth type III module for binding to ${\alpha}$5${\beta}$1 integrin (Aota et al. 1994). (omitted)

  • PDF

An optimized radiosynthesis of 18F-THK-5351 for routine production on TRACERlab™ FXFN

  • Park, Jun Young;Son, Jeongmin;Yun, Mijin;Chun, Joong-Hyun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • $^{18}F-THK-5351$ is a PET radiotracer to image the hyperphosphorylated tau fibrillar aggregates in human brain. This protocol describes the optimized radiosynthesis of $^{18}F-THK-5351$ using a commercial GE $TRACERlab^{TM}$ $FX_{FN}$ radiosynthesis module. $^{18}F-THK-5351$ was prepared by nucleophilic [$^{18}F$]fluorination from its protected tosylate precursors, (S)-(2-(2-methylaminopyrid-5-yl)-6-[[2-(tetrahydro-2H-pyran-2-yloxy)-3-tosyloxy]propoxy] quinolone(THK-5352), at $110^{\circ}C$ for 10 min in dimethyl sulfoxide, followed by deprotection with 1 N HCl. The average radiochemical yield of $^{18}F-THK-5351$ was $31.9{\pm}6.7%$(decay-corrected, n = 10), with molar activity of $198.1{\pm}33.9GBq/{\mu}mol$($5.4{\pm}0.9Ci/{\mu}mol$, n = 10). The radiochemical purity was determined to be above 98%. The overall production time including HPLC purification is approximately 70 min. This fully-automated protocol is validated for clinical use.

Optimized production method of [18F]flortaucipir injection for imaging tau pathology in patients with Alzheimer's disease

  • Kyung Rok Nam;Sang Jin Han;Nam Hun Lee;Min Yong Lee;Youngduk Kim;Kyo Chul Lee;Yong Jin Lee;Young Hoon Ryu;Jae Yong Choi
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Aggregated neurofibrillary tangles (NFTs) are a pathological hallmark in Alzheimer's disease (AD) and many radiopharmaceuticals targeting NFTs have been developed so far. Among these, [18F]flortaucipir (TAUVIDTM) is the first approved radiopharmaceutical in the Food and Drug Administration (FDA) to image tau pathology. In the present study, we describe the optimized radiosynthetic method for the routine production of [18F] flortaucipir using a commercialized automation module (i.e. GE TRACERlabTM FXFN pro). [18F]Flortaucipir was prepared by nucleophilic substitution from its N-tert-butoxycarbonyl protected nitro precursor, tertbutyl 7-(6-nitropyridin-3-yl)-5H-pyrido[4,3-b]indole-5-carboxylate, at 130℃ for 10 min in dimethyl sulfoxide. The mean radiochemical yield was 20 ± 4.3% (decay-corrected, n = 47) with the molar activity of 218 ± 32 GBq/µmol at the end of synthesis. The radiochemical purity was determined to be above 95%. The overall production time including quality control is approximately 100min. The final produced [18F]flortaucipir injection meets the USP criteria for quality control. Thus, this fully automated system is validated for clinical use.

Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging (타우 PET영상을 위한 18F-THK5351의 표지방법 개발)

  • Park, Jun-Young;Son, Jeong-Min;Chun, Joong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2018
  • Purpose $^{18}F-THK5351$ is the newly developed PET probe for tau imaging in alzheimer's disease. The purpose of study was to establish the automated production of $^{18}F-THK5351$ on a commercial module. Materials and Methods Two different approaches were evaluated for the synthesis of $^{18}F-THK5351$. The first approach (method I) included the nucleophilic $^{18}F$-fluorination of the tosylate precursor, subsequently followed by pre-HPLC purification of crude reaction mixture with SPE cartridge. In the second approach (method II), the crude reaction mixture was directly introduced to a semi-preparative HPLC without SPE purification. The radiosynthesis of $^{18}F-THK5351$ was performed on a commercial GE $TRACERlab^{TM}$ $FX-_{FN}$ module. Quality control of $^{18}F-THK5351$ was carried out to meet the criteria guidelined in USP for PET radiopharmaceuticals. Results The overall radiochemical yield of method I was $23.8{\pm}1.9%$ (n=4) as the decay-corrected yield (end of synthesis, EOS) and the total synthesis time was $75{\pm}3min$. The radiochemical yield of method II was $31.9{\pm}6.7%$ (decay-corrected, n=10) and the total preparation time was $70{\pm}2min$. The radiochemical purity was>98%. Conclusion This study shows that method II provides higher radiochemical yield and shorter production time compared to the pre-SPE purification described in method I. The $^{18}F-THK5351$ synthesis by method II will be ideal for routine clinical application, considering short physical half-life of fluorine-18 ($t_{1/2}=110min$).