• 제목/요약/키워드: FMVSS208

검색결과 15건 처리시간 0.018초

저속 40%오프셋 충돌시험을 통한 차량의 손상성 .수리성 및 안전성에 관한연구 (Damageability , Repairability and Safety of Vehicles at Low Speed 40% Offset Crash Test)

  • 박인송;허승진;정태용
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.203-211
    • /
    • 1999
  • The research committee for automobile repairs (RCAR), an international body of insurance research centers, has adopted the typical low speed crash test based on an average damage level in crash accidents to estimate the damageability , repairability and safety. The characteristics of body acceleration and the probability of injury are investigated based on damaged components, accelerations of body and injured dummy to analyze damageability and the driver's safety under low speed crash environment. It is found from the experimental results that the probability of head and thorax injuries are very low comparing to the injury criteria of FMVSS No.208. Furthermore, it is suggested that the deployment of airbag may not be necessary at RCAR low speed frontal crash test.

  • PDF

DEVELOPMENT OF OCCUPANT CLASSIFICATION SYSTEM BASED ON DISTRIBUTED SYSTEM INTERFACE

  • Chang, K.B.;Lee, C.K.;Park, G.T.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.195-199
    • /
    • 2006
  • According to the United States FMVSS 208, every passenger car on the market after September of 2006 must install a safety system, which can deploy the airbag with different intensity or suppression based on the passenger type, to reduce infant and child injuries from airbag deployments. The Weight Classification System, which has been developed by Hyundai Autonet, is a system that classifies the person occupying the passenger seat. To overcome sensing problems due to the weight sensors small voltage, the Distributed Systems Interface is adopted.

PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구 (A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program)

  • 최용순;백세룡;정종길;조정권;윤준규
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.227-235
    • /
    • 2018
  • 최근 자동차 교통량의 증가로 인해 차량 전복사고가 급증하여 이에 따른 인명피해가 증가해왔으며, 이를 방지하기 위한 차량충돌 실험장비 및 해석프로그램 개발 등의 다양한 기술이 진보되고 있다. 본 연구에서는 적용한 차량모델은 미국 FORD사의 EXPLORER 차종이고, Rollover 해석은 차량충돌해석에 상용되고 있는 PC-Crash 프로그램을 이용하여 SUV의 전복사고 거동 및 충돌속도를 예측하였다. 그 해석결과로 FMVSS No. 208 법규를 통한 SUV차량의 실제 Rollover 거동과 비교할 때 유사한 결과를 보여주었으며, 충돌속도 및 롤각의 특성은 1000 msec 이후부터는 다소 오차율이 커지는 경향을 나타냈다. 그리고 NHTSA의 데이터베이스를 활용하여 고찰한 결과로 충돌속도 15~77 km/h, 충돌각도 $22{\sim}74^{\circ}$ 범위에서 전복사고가 가장 많이 발생함을 나타냈고, 실제 사고사례를 적용함으로써 차량 출발 위치, Roof 파손위치, 정지위치를 재현시켜 차량 Roof가 파손될 때 차량속도 및 충돌시간을 예측할 수 있었다.

알루미늄 초경량 차체의 충격 흡수부재 설계 및 충돌 안전도 평가 (Design of the Impact Energy Absorbing Members and Evaluation of the Crashworthiness for Aluminum Intensive Vehicle)

  • 김헌영;김진국;허승진;강혁
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.216-233
    • /
    • 2002
  • Due to the environmental problems of fuel consumption and vehicle emission, etc., automotive makers are trying to reduce the weight of vehicles. The most effective way to reduce a vehicle weight is to use lighter materials, such as aluminum and plastics. Aluminum Intensive Vehicle(AIV) has many advantages in the aspects of weight reduction, body stiffness and model change. So, most of automotive manufacturers are attempting to develop AIV using Aluminum Space Frame(ASF). The weight of AIV can be generally reduced to about 30% than that of conventional steel vehicle without the loss of impact energy absorbing capability. And the body stiffness of AIV is higher than that of conventional steel monocoque body. In this study, Aluminum Intensive Vehicle is developed and analyzed on the basis of steel monocoque body. The energy absorbing characteristics of aluminum extrusion components are investigated from the test and simulation results. The crush and crash characteristics of AIV based on the FMVSS 208 regulations are evaluated in comparison with steel monocoque. Using these results, the design concepts of the effective energy absorbing members and the design guide line to improve crashworthiness for AIV are suggested.

고안전 에어백의 승객 분류를 위한 체압감지 센서를 위한 알고리즘 개발 (Algorithm development of a body pressure detection sensor for the occupant classification system)

  • 윤득선;오성록;송정훈;김병수;부광석
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.385-392
    • /
    • 2009
  • This paper describes the algorithm development of a new body pressure detection sensor for occupant classification system. U.S. Government has required that advanced airbag system should be installed to every automobiles after 2006 according to FMVSS 208 regulation. Therefore, Occupant Classification System should be provided the passenger with safety in order to protect the infants or children that sit in the front passenger seat. When an occupant sits on the chair of the vehicle, deployment of the airbag depends on passenger's weigh distribution and postures. Authors have been developed a new pattern recognition of passenger and weight distribution at the same time by Force Sensing Resistor for the safety.