• Title/Summary/Keyword: FLUKA simulation

Search Result 16, Processing Time 0.018 seconds

Planning and decommissioning of a disused Theratron- 780 teletherapy machine and the dose assessment methodology for normal and radiological emergency conditions

  • Mohamed M.Elsayed Breky ;Muhammad S. Mansy;A.A. El-Sadek ;Yousif M. Mousa ;Yasser T. Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.238-247
    • /
    • 2023
  • The present work represents a technical guideline for decommissioning a disused teletherapy machine model Theratron-780 and contains category one 60Co radioactive source. The first section predicts the dose rate from the source in case of normal and radiological emergency situations via FLUKA-MC simulation code. Moreover, the dose assessment for the occupational during the whole process is calculated and compared to the measured values. A suggested cordoned area for safety and security in a radiological emergency is simulated. The second section lists the whole process's technical procedures, including (preview, dismantle, securing, transport and storage) of the disused teletherapy machine. Results show that the maximum obtained accumulated dose for occupational were found to be 24.5 ± 4.9 μSv in the dismantle and securing process in addition to 3.5 ± 1.8 μSv during loading on the transport vehicle and unloading at the storage facility. It was found that the measured accumulated dose for workers is in good agreement with the estimated one by uncertainty not exceeding 5% in normal operating conditions.

A Study on the Difference of Geometrical Modeling in the Calculation of Shielding and Activation Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 차폐 및 방사화 계산에서 기하학적 모델링의 차이에 따른 결과 연구)

  • Heo, Seunguk;Song, Yongkeun;Cho, Gyuseok;Han, Moojae;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.429-435
    • /
    • 2017
  • In order to increase the therapeutic effect of radiation, there has been an increase in the use of conventional photon therapy. The intensive care unit should pay more attention to the radiation safety evaluation due to the higher energy and the larger facility compared to the existing Photon treatment. These radiation safety evaluations are mainly performed by using Monte Carlo simulation, and the first thing to be done is geometric modeling. The Heavy-ion treatment facility uses synchrotron as the accelerating device, which is difficult to precisely model geometrically and is mostly modeled briefly. This study investigated the effect of simplification and precise implementation of Dipole magnet among the components of synchrotron acceleration device on the radiation safety evaluation. The results show that the simplified geometric model is overestimated with the precisely implemented geometric model. Therefore, it is considered that the radiological safety evaluation results in more reliable results of the precise geometric modeling.

A Study on the Performance Evaluation of Standard Gamma Irradiation System Using Monte Carlo Code (몬테카를로 코드를 활용한 표준 감마선 조사장치의 성능평가에 관한 연구)

  • Park, Won-Seok;Heo, Seung-Uk;Kim, Jang-Oh;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.179-184
    • /
    • 2018
  • In this study, we compared the measured values of the effective beam size of standard gamma irradiator with the simulation results to provide a useful means to the effective beam area determination. Results of the simulation and measured using ion chamber was distributed in a relative error of 4.5 ~ 7.3% of the case of air kerma rate. The size of the effective beam area is when the simulation was implemented in the horizontal direction 27cm, 21.6cm vertical direction, the measured result using a film was obtained similar results with the horizontal direction 26.5cm, 21.9cm vertical direction. The relative error in the horizontal direction is 1.85% and 1.38% vertical effective beam area was also similarly distributed around the field gamma rays. As a result of the study, it was confirmed that the effectiveness of the simulation was sufficient for the gamma irradiation system. In particular, it is small relative errors in the effective beam size than the air kerma rate is considered to be due to the size of the beam is determined by geometric factors rather than the capacity of the standard source. A further study is needed to improve the reliability of the photon energy distribution diagram using simulation.

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.

Evaluation of Angle Dependence on Positional Radioisotope Source Detector using Monte Carlo Simulation in NDT (몬테카를로 시뮬레이션을 이용한 방사선원 위치 검출기의 각도의존성 연구)

  • Han, Moojae;Heo, Seunguk;Shin, Yohan;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.141-146
    • /
    • 2019
  • Radiation sources used in the field of industrial non-destructive pose a risk of exposure due to ageing equipment and operator carelessness. Thus, the need for a safety management system to trace the location of the source is being added. In this study, Monte Carlo Simulation was performed to analyse the angle dependence of the unit-cell comprising the line-array dosimeter for tracking the location of radiation sources. As a result, the margin of error for the top 10% of each slope was 5.90% at $0^{\circ}$, 8.08% at $30^{\circ}$, and 20.90% at $60^{\circ}$. The ratio of the total absorbed dose was 83.77% at $30^{\circ}$ and 53.36% at $60^{\circ}$ based on $0^{\circ}$(100%) and showed a tendency to decrease with increasing slope. For all gradients, the maximum number was shown at $30^{\circ}$ No. 9 pixels, and for No. 10, there was a tendency to drop 7.24 percent. This study has shown a large amount of angle dependence, and it is estimated that the proper distance between the source and line-array dosimeters should be maintained at a distance of not less than 1 cm to reduce them.

Radioactivation Analysis of Concrete Shielding Wall of Cyclotron Room Using Monte Carlo Simulation (PET 사이클로트론 가동에 따른 콘크리트 차폐벽의 방사화)

  • Jang, Donggun;Lee, Dongyeon;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.335-341
    • /
    • 2017
  • Cyclotron is a device that accelerates positrons or neutrons, and is used as a facility for making radioactive drugs having short half-lives. Such radioactive drugs are used for positron emission tomography (PET), which is a medical apparatus. In order to make radioactive drugs from a cyclotron, a nuclear reaction must occur between accelerated positrons and a target. After the reaction, unncessary neutrons are produced. In the present study, radioactivation generated from the collisions between the concrete shielding wall and the positrons and neutrons produced from the cyclotron is investigated. We tracked radioactivated radioactive isotopes by conducting experiments using FLUKA, a type of Monte Carlo simulation. The properties of the concrete shielding wall were comparatively analyzed using materials containing impurities at ppm level and materials that do not contain impurities. The generated radioactivated nuclear species were comparatively analyzed based on the exposure dose affecting human body as a criterion, through RESRAD-Build. The results of experiments showed that the material containing impurities produced a total of 14 radioactive isotopes, and $^{60}Co$(72.50%), $^{134}Cs$(16.75%), $^{54}Mn$(5.60%), $^{152}Eu$(4.08%), $^{154}Eu$(1.07%) accounted for 99.9% of the total dose according to the analysis having the exposure dose affecting human body as criterion. The $^{60}Co$ nuclear species showed the greatest risk of radiation exposure. The material that did not contain impurities produced a total of five nuclear species. Among the five nuclear species, 54Mn accounted for 99.9% of the exposure dose. There is a possibility that Cobalt can be generated by inducive nuclear reaction of positrons through the radioactivation process of $^{56}Fe$ instead of impurities. However, there was no radioactivation because only few positrons reached the concrete wall. The results of comparative analysis on exposure dose with respect to the presence of impurities indicated that the presence of impurities caused approximately 98% higher exposure dose. From this result, the main cause of radioactivation was identified as the small ppm-level amount of impurities.