• 제목/요약/키워드: FIV

검색결과 79건 처리시간 0.023초

접촉해석이 연계된 스프링 지지보의 진동해석 (Vibration Analysis of Beam Supported by Springs Considering a Contact)

  • 최명환;강홍석;송기남;윤경호;김형규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1216-1221
    • /
    • 2002
  • The fuel rods in the pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster (fuel assembly). The fuel rods are vibrating within the reactor due to coolant flow. Since the vibration, what is called flow-induced vibration(FIV), can wear away the surface of the fuel rod, it is important to understand the vibration characteristics of it. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the previous FE model and the new one are compared with those of experiment fur a single-spanned rod supported by two ND spacer grids. The results by the new model show good agreement to experiment as compared with the ones by previous model. In addition, the new FE model is applied to the vibration analysis fur the dummy rod of 2.19 m tall continuously supported by five ND spacer grids. It is also obtained that the analysis results by the new FE model well agree to experiment ones as the single-spanned rod.

  • PDF

전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구 (Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique)

  • 김동현;장태진;권혁준;이인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석 (Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Phenobarbital and zonisamide treatment of a cat with epilepsy of unknown cause

  • Lee, Ki-Ho;Park, Jun-Seok;Kim, Jung-Kook;Seo, Kyoung-Won;Song, Kun-Ho
    • 한국동물위생학회지
    • /
    • 제40권2호
    • /
    • pp.143-147
    • /
    • 2017
  • A Korean domestic short hair (1-year-old, male) presented with 2 to 3 weeks of seizures, aggressive behavior, vomiting, anorexia, and lethargy. The frequency of seizure had gradually increased from once a week to once every 3 hours. Physical and neurologic examination, diagnostic screening tests, including complete blood count (CBC), serum chemistry, electrolyte, coagulation test, X-ray, ultrasonography, and urinalysis were performed. Feline Leukemia Virus (FeLV), Feline Immunodeficiency Virus (FIV) and Toxoplasma spp. All tested negative, but the Feline Corona Virus (FCoV) kit revealed a positive result. To determine the exact diagnosis, magnetic resonance imaging (MRI) was performed but yielded no specific findings. The patient was then diagnosed with idiopathic epilepsy and treatment of phenobarbital was initiated. A month's treatment with phenobarbital proved ineffective as symptoms worsened. Zonisamide was then selected as an additional anticonvulsant. After adding zonisamide, symptoms improved, and seizures abated for 15 months. This is the first case report in South Korea describing the use of phenobarbital and zonisamide in the treatment of a cat with idiopathic epilepsy.

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성 (Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds)

  • 김진선;박세민;김용환;이승재;이영제
    • Tribology and Lubricants
    • /
    • 제23권3호
    • /
    • pp.130-133
    • /
    • 2007
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

부식된 핵연료 피복관과 지지격자 사이의 프레팅 마멸 특성 (Fretting Wear Characteristics of the Corroded Fuel Cladding Tubes for Nuclear Fuel Rod against Supporting Girds)

  • 이영제;김진선;박세민;김용환;이승재
    • Tribology and Lubricants
    • /
    • 제24권3호
    • /
    • pp.129-132
    • /
    • 2008
  • Fuel cladding tubes in nuclear fuel assembly are held up by supporting grids because the tubes are long and slender. Fluid flows of high-pressure and high-temperature in the tubes cause oscillating motions between tubes and supports. This is called as FIV (flow induced vibration), which causes fretting wear in contact parts of tube and support. The fretting wear of tube and support can threaten the safety of nuclear power plant. Therefore, a research about the fretting wear characteristics of tube-support is required. The fretting wear tests were performed with supporting grids and cladding tubes, especially after corrosion treatment on tubes, in water. The tests were done using various applied loads with fixed amplitude. From the results of fretting tests, the wear amounts of tube materials can be predictable by obtaining the wear coefficient using the work rate model. Due to stick phenomena the wear depth was changed as increasing load and temperature. The maximum wear depth was decreased as increasing the water temperatures. At high temperatures there are the regions of some severe adhesion due to stick phenomena.

5×5 부분핵연료 집합체의 감쇠추정을 위한 실험적 연구 (Experimental Study on the Damping Estimation of the 5×5 Partial Fuel Assembly)

  • 이강희;윤경호;송기남
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.163-168
    • /
    • 2006
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle $(5\times5)$ which is called partial fuel assembly is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid to obtain the Flow-Induced Vibration (FIV) characteristics of the scaled fuel assembly over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the assembly prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the scaled test assembly. For the damping factor of the partial fuel assembly and the grid cage at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the partial fuel assembly is about $0.7\%$ with reasonable error of $2\%$ for the previous results. Nonlinear behavior of the partial fuel assembly might be stem mainly from the rod-grid support configuration.

기후변화를 고려한 홍수취약성지표의 개발 (Development of Flood Vulnerability Index Considering Climate Change)

  • 손민우;성진영;정은성;전경수
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.231-248
    • /
    • 2011
  • 본 연구에서는 기후변화 요소를 반영하여 홍수취약성지표 (Flood Vulnerability Index, FVI)를 개발하였고 이를 북한강 유역의 6개 중권역에 적용하였다. 기후변화 요소를 고려하기 위해 IPCC의 CGCM3 모형의 A1B와 A2 시나리오를 이용하였고 일단위로 축소화하기 위해 SDSM (Statistical Downscaling Model) 모형을 이용하였다. 홍수취약성 인자를 선정하기 위해 지속가능성 평가모형인 추진력-압력-상태-영향-반응 (Driver-Pressure-State-Impact-Response, DPSIR) 모형을 이용하였고 기후변화로 인한 홍수유출의 특성분석은 연속유출모의모형인 HSPF (Hydrological Simulation Program-Fortran)를 이용하였다. 본 연구에서 개발된 홍수취약성지수는 유역의 현상태 및 기후변화의 영향으로 인한 잠재적 취약성을 정량적인 하나의 지수로 간결하게 표현할 수 있어서 장기 수자원 및 유역관리 정책수립에 사용될 수 있을 것으로 기대된다.

이동 가능한 연료봉 지지부의 특성 고찰 (Study on Characteristics of Sliding Support for Fuel Rod)

  • 송기남;이상훈
    • 대한기계학회논문집A
    • /
    • 제35권2호
    • /
    • pp.201-206
    • /
    • 2011
  • 지지격자체는 경수로 핵연료집합체의 특성과 성능에 영향을 주는 가장 중요한 핵심 구조부품 중에 하나이다. 지지격자체 설계시의 우선적으로 고려해야할 사항은 핵연료가 원자로에 장전되어 있는 동안 내내 연료봉이 기계적인 원인에 의해 손상되지 않도록, 즉 연료봉의 기계적 지지건전성이 유지되도록 설계하는 것이다. 연료봉이 유동기인진동에 의해서 진동할 때 연료봉과 연료봉 지지부 사이에서 상대변위 발생을 완화해 줌으로서 연료봉의 프레팅 마모 손상 가능성이 감소될 수 있는 것으로 알려져 있다. 본 연구에서는 이동 가능한 연료봉 지지부로 구성된 새로운 지지격자체 형상을 제안하였고, 제안된 이동 가능 지지부의 연료봉 지지특성을 유한요소해석을 통해 분석하였다.