• Title/Summary/Keyword: FISPACT-II(4.0)

Search Result 2, Processing Time 0.016 seconds

Evaluating Activation for 50 MeV Cyclotron Irradiation Service using Monte Carlo Method and Inventory Code (50 MeV 사이클로트론 조사 서비스로 인한 방사화 평가)

  • Kim, Sangrok;Kim, Gi-sub;Heo, Jaeseung;Ahn, Yunjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.415-427
    • /
    • 2021
  • Korea Institute of Radiological and Medical Sciences has provided various beam irradiation services to researchers using a 50 MeV cyclotron beam line. In particular, since the neutron beam service uses the nuclear reaction between protons and beryllium, the possibility of activation of the irradiated sample increases by using a high current. In this study, MCNP 6.2 and FISPACT-II 4.0 were used to evaluate the possible activation during the 35 MeV 20 ㎂ neutron beam service, which is preferred by the researchers. As a result of the calculation, if the iron, copper, and tungsten samples were irradiated for more than 1 hour, long-lived radioisotopes were produced and their radioactivity exceeded the standard level for self-disposal. Under the conditions of 2 hours of daily irradiation, no activation occurred in the building materials, and the internal exposure of workers due to air activation inside the irradiation room was very insignificant. And when this air was discharged to environment, the radioactivity including this air was also satisfied the emission standard.

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.