• Title/Summary/Keyword: FINITE ELEMENT ANALYSIS

Search Result 16,775, Processing Time 0.038 seconds

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Dynamic Analysis of HVAC Case for Passenger Car (승용차용 HVAC Case의 동특성 해석)

  • Yook, Ji-Yong;Cha, Yong-Kil;Lim, Jung-Su;Kim, Kwang-Il;Kim, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.378-384
    • /
    • 2008
  • This Paper presents dynamic analysis of HVAC(Heating Ventilation & Air Condition) Heater Case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC Heater Case. finite element model which consists of shell elements is constructed for modal analysis and experimental Modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model After identifying node shape and natural frequency of HVAC Heater Case, local stiffness of HVAC Case is evaluated through point mobility using finite element analysis and experiment.

  • PDF

Dynamic Analysis of HVAC Case for Passenger Car (승용차용 HVAC Case의 동특성 해석)

  • Yook, Ji-Yong;Cha, Yong-Kil;Lim, Jung-Su;Kim, Kwang-Il;Kang, Sung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2009
  • This paper presents dynamic analysis of HVAC(heating ventilation & air conditioning) heater case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC heater case, finite element model which consists of shell elements is constructed for modal analysis and experimental modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model. After identifying mode shape and natural frequency of HVAC heater case, local stiffness of HVAC case is evaluated through point mobility using finite element analysis and experiment.

A Study on the Determination of Closing Level for Finite Element Analysis of Fatigue Crack Closure

  • Choi, Hyeon-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.401-407
    • /
    • 2000
  • An elastic-plastic finite element analysis is performed to investigate detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The finite element analysis performed under plane stress using 4-node isoparametric elements can predict fatigue crack closure behavior. The mesh of constant element size along crack surface can not predict the opening level of fatigue crack. The crack opening level for the constant mesh size increases linearly from initial crack growth. The crack opening level for variable mesh size, is almost flat after crack tip has passed the monotonic plastic zone. The prediction of crack opening level using the variable mesh size proportioning the reversed plastic zone size with the opening stress intensity factors presents a good agreement with the experimental data regardless of stress ratios.

  • PDF

An Elasto-Plastic Finite Element Analysis on Deep Drawing of Clad Sheet Metal (클래드 강판재에 의한 축대칭 디프드로잉의 탄소성 유한요소해석)

  • 류호연;김영은;김종호;정완진
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.411-417
    • /
    • 2001
  • A Comparative study on deep drawing of clad sheet is carried out to investigate the forming characteristics and the effectiveness of modified finite element analysis. An elasto-plastic finite element analysis Is developed to analyze the forming of clad sheet using explicit scheme and layered shell. Axisymmetric deep drawing of stainless clad metal sheet is performed and thickness distribution is obtained. The corresponding finite element analysis shows good agreement with the results. Some disagreement can be explained by the assumption of shell element and the complexity of deformation of clad sheet.

  • PDF

Finite Element Analysis of Reinforced Concrete Shear Walls with a Crack under Cyclic Loading

  • Kato, S.;Ohya, M.;Shimaoka, S.;Takayama, M.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • The present paper investigates the nonlinear behavior of reinforced concrete shear walls with a crank based on a finite element analysis. The loading type is a horizontal cyclic one such as earthquake loads. Experiments of the shear walls with and without cranks, performed previously to see flow the behavior changes depending on the crank, are compared with the results obtained from the finite element analysis. The finite element analysis is based on an isoparametric degenerated shell formulation. The nonlinear constitutive equations fur concrete are modeled adopting the formulation based on a concept of Ring Typed-Lattice Model. The experiments indicate that the shear walls with a crank have low stiffness and relatively low carrying capacity compared with an ordinary plane shear wall without cranks and that they are more ductile, and the tendency is a1so confirmed based on the finite element analysis. Moreover, a good agreement between the experiments and analyses is obtained, accordingly, it is confined that the present numerical analysis scheme based on the Lattice Model is a powerful one to evaluate the behavior of reinforced concrete shear walls with cranks and without cranks.

  • PDF

Static finite element analysis of architectural glass curtain walls under in-plane loads and corresponding full-scale test

  • Memari, A.M.;Shirazi, A.;Kremer, P.A.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.365-382
    • /
    • 2007
  • A pilot study has been conducted to guide the development of a finite element modeling formulation for the analysis of architectural glass curtain walls under in-plane lateral load simulating earthquake effects. This pilot study is one aspect of ongoing efforts to develop a general prediction model for glass cracking and glass fallout for architectural glass storefront and curtain wall systems during seismic loading. For this study, the ANSYS finite element analysis program was used to develop a model and obtain the stress distribution within an architectural glass panel after presumed seismic movements cause glass-to-frame contact. The analysis was limited to static loading of a dry-glazed glass curtain wall panel. A mock-up of the glass curtain wall considered in the analysis with strain gages mounted at select locations on the glass and the aluminum framing was subjected to static loading. A comparison is made between the finite element analysis predicted strain and the experimentally measured strain at each strain gage location.

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF

The Dynamic Characteristics and Defect Analysis of Pressurized Water Reactor Internals (원자로 내부구조물의 동특성 및 결함해석)

  • Ahn, Chang-Gi;Park, Jin-Ho;Lee, Jeong-Han;Chae, Young-Chul;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • Finite element model of pressurized water reactor internals were obtained using ANSYS software package to analyze dynamic characteristics. The pressure vessel, hold-down ring, alinement key, core support barrel(CSB), upper guide structure(UGS) and fluid gap were fully modeled using structural solid element(SOLID45) and fluid element(FLUID80) which is one of element types. Also modal analysis using the above finite element model has been performed. As a result, it was found that the fundamental beam mode natural frequency of the CSB were 8.2 Hz, the shell mode one 14.5 Hz. To verify the Finite Element Analysis(FEA), we compare the analysis result with experimental data that is obtained from the plant IVMS(internal Vibration Monitoring System). The experimental results are good agreement with the FEA model.

  • PDF

Dynamic behaviour of thick plates resting on Winkler foundation with fourth order element

  • Ozdemir, Yaprak I.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.359-368
    • /
    • 2019
  • This paper focuses on the study of dynamic analysis of thick plates resting on Winkler foundation. The governing equation is derived from Mindlin's theory. This study is a parametric analysis of the reflections of the thickness / span ratio, the aspect ratio and the boundary conditions on the earthquake excitations are studied. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. While using finite element method, a new element is used. This element is 17-noded and it's formulation is derived from using higher order displacement shape functions. C++ program is used for the analyses. Graphs are presented to help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that the 17-noded finite element is used in the earthquake analysis of thick plates. It is shown that the changes in the aspect ratio are more effective than the changes in the aspect ratio. The center displacements of the reinforced concrete thick clamped plates for b/a=1, and t/a=0.2, and for b/a=2, and t/a=0.2, reached their absolute maximum values of 0.00244 mm at 3.48 s, and of 0.00444 mm at 3.48 s, respectively.