• Title/Summary/Keyword: FIMS

Search Result 158, Processing Time 0.028 seconds

Simultaneous Observation of FUV Aurora with Precipitating Electrons on STSAT-1

  • Lee, C.N.;Min, K.W.;Lee, J.J.;Kim, K.H.;Kim, Y.H.;Han, W.;Edelstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.31.2-31.2
    • /
    • 2008
  • We present the results offar ultraviolet (FUV, 1350-1750 ${\AA}$) auroral observations made by the Far-ultraviolet IMaging Spectrograph (FIMS) instrument on the Korean microsatellite STSAT-1. The instrument was capable of resolving spatial structures of a few kilometers with the spectral resolution of 2-3 ${\AA}$. The observations were carried out simultaneously with the measurement of precipitating electrons using an electrostatic analyzer (ESA, 100 eV-20 keV) and a solid state telescope (SST, 170 keV-360 keV) on board the same satellite. With a careful mapping of the field lines, we were able to correlate the particle spectrum to the corresponding FUV spectrum of the footprints of the FIMS image that varied significantly in fine scales. We divided the FIMS spectral band into the LBH long (LBHL, 1640-1715 ${\AA}$) and LBH short (LBHS, 1380-1455 ${\AA}$) bands, and compared the electron energies with the intensities of LBHL and LBHS for the well-defined inverted-V structures. The result shows a strong correlation between the total LBH intensity and the energy flux measured by ESAwhile the peak energy itself does not correlate well with the LBH intensity. On the other hand, it was observed that the ratio of the LBHL intensity to that of LBHS increased significantly as the peak electron energy increased, primarily due to a smaller absorption by O2 at LBHL than at LBHS.

  • PDF

FUV observation of the comet C/2001 Q4 (NEAT) with FIMS

  • Lim, Yeo-Myeong;Min, Kyoung Wook;Feldman, Paul D.;Han, Wonyong;Edelstein, Jerry
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.107.1-107.1
    • /
    • 2012
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual-channel imaging spectrograph (S channel 900-1150 ${\AA}$, L channel 1350-1750 ${\AA}$, ${\lambda}/{\Delta}{\lambda}$ ~ 550) with large image fields of view (S: $4^{\circ}.0{\times}4^{\prime}.6$, L: $7^{\circ}.5{\times}4^{\prime}.3$, angular resolution 5'-10') optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) was observed with a scanning survey mode when it was located around the perihelion between 8 and 15 May 2004. Several important emission lines were detected including S I (1425, 1474 ${\AA}$), C I (1561, 1657 ${\AA}$) and several emission lines of CO $A^1{\Pi}-X^1{\Sigma}^+$ system in the L channel. Production rates of the notable molecules, such as C I, S I and CO, were estimated from the photon fluxes of these spectral lines and compared with previous observations. We compare the flux and the production rates in the radius of $3{\times}10^5$ km with $20{\times}10^5$ km from the central coma. We obtained L-channel image which have map size $5^{\circ}{\times}5^{\circ}$ The image was constructed for the wavelength band of L-channel (1350 - 1710 ${\AA}$. We also present the radial profiles of S I, C I, CO obtained from the spectral images of the central coma. The radial profiles of $2{\times}10^6$ km region are compared with the Haser model.

  • PDF

Far Ultraviolet Observations of the Spica Nebula and the Interaction Zone

  • Choi, Yeon-Ju;Park, Jae-Woo;Lim, Tae-Ho;Min, Kyoung-Wook;Seon, Kwang-Il;Jo, Young-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • We report the results of our analysis of far ultraviolet (FUV) observations made for the broad region around the ${\alpha}$ Vir (Spica) including the interaction zone of the Loop I and the Local Bubble. We employed the datasets of the GALEX and the FIMS, which made observations at similar FUV wavelengths. First, we noted that the GALEX image was enhanced in the southern region where the interaction zone exists. We attribute this enhanced FUV emission to dust scattering of the stellar photons, mostly from the background field stars with small contributions from the central star Spica. While the region is optically thin in general, the FUV intensity did not correlate well with the dust extinction level, indicating that the local radiation field has significant fluctuations. On the other hand, the GALEX FUV intensity well with the $H{\alpha}$ intensity as well as the dust extinction level in the northern part. In fact, the neutral hydrogen column density correlated very well with the dust extinction level throughout the whole region in consideration. The relationship between the neutral hydrogen column density and the color excess was estimated to be ${\sim}7{\times}10^{21}atoms\;cm^{-2}$, which is a little higher than the previous observations made for a diffuse interstellar medium. The spectral analyses of the FIMS observations showed the enhanced C IV emission throughout the whole region, indicating that the C IV emission arises by the interaction of the hot gases with the shell boundaries. A simple model showed that a large portion of the C IV emission comes from the Loop I side of the interaction zone, compared to the Local Bubble side. The FIMS spectrum also showed indications of the molecular hydrogen fluorescence lines for the interaction zone.

  • PDF

Progress Report of FIMS XDL System

  • Rhee J. G.;Nam U. -W;Jin H.;Lee D. H.;Seon J.;Min K. W.;Han W.;Korpela E.;Edelstein J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.25 no.2
    • /
    • pp.55-55
    • /
    • 2000
  • PDF