• Title/Summary/Keyword: FGMs

Search Result 114, Processing Time 0.022 seconds

Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions

  • Kou, Miaomiao;Bi, Jing;Yuan, Binhang;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.339-356
    • /
    • 2020
  • In this article, a developed bond-based peridynamic model for functionally graded materials (FGMs) is proposed to simulate the dynamic fracture behaviors in FGMs. In the developed bond-based peridynamic model for FGMs, bonds are categorized into three different types, including transverse directionally peridynamic bond, gradient directionally peridynamic bond and arbitrary directionally peridynamic bond, according to the geometrical relationship between directions of peridynamic bonds and gradient bonds in FGMs. The peridynamic micromodulus in the gradient directionally and arbitrary directionally peridynamic bonds can be determined using the weighted projection method. Firstly, the standard bond-based peridynamic simulations of crack propagation and branching in the homogeneous PMMA plate are performed for validations, and the results are in good agreement with the previous experimental observations and the previous phase-field numerical results. Then, the numerical study of crack initiation, propagation and branching in FGMs are conducted using the developed bond-based peridynamic model, and the influence of gradient direction on the dynamic fracture behaviors, such as crack patterns and crack tip propagation speed, in FGMs is systematically studied. Finally, numerical results reveal that crack branching in FGMs under dynamic loading conditions is easier to occur as the gradient angle decreases, which is measured by the gradient direction and direction of the initial crack.

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II))

  • 정연길;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF

Advanced SPS Systems and FGM Technolgy

  • Tokita, Masao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.11-11
    • /
    • 2000
  • Large-size ceramic/metal bulk FGMs have been fabricated on a recently developed and the world's largest Spark Plasma Sintering(SPS) systems, As a part of the development program for practical production processes and machines for FGMs by SPS, the processes, mechanical properties, dimensional size and shape effects, and production machine systems were investigated. In the past, $ZrO_{2}$/TiAI, $ZrO_{2}$/Ni, $Al_{2}O_{3}$/Ti, WC/Co, WC/Co/Steel, A1/P, Polymide, Cu/Polymide, nano-composites, porous and other combinations of bulk FGMs have already been processed using SPS. However, most of the specimen sizes were small, in a range of 20 to 30mm in diameter. Recently disk-shape sintered compacts with diameters of 100 and 150 mm, and thickness of approximately 15 and 17 mm, $ZrO_{2}$(3Y)/ stainless steel FGMs were homogenous consolidated in a shorter sintering time, while maintaining high quality and repeatability by utilizing a temperature gradient sintering method. The SPS heating up and holding time totaled less than one hour. Therefore, the SPS process in expected to find increased use in the fabrication of large-size FGMs as a new industrial processing technology. This paper introduces SPS systems, the processing principles, features and the characteristies of ceramic/metal bulk FGM.

  • PDF

THERMAL PROPERTIES OF SIC/C FUNCTIONALLY GRADIENT MATERIALS BY CVD

  • Kim, Yoo-Taek;Auh, Keun-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.454-458
    • /
    • 1996
  • The computer simulated CVD phase diagrams were completed by the stoichiometric algorithm. Three kinds of SiC/C FGMs: stepwise, semi-continuous, and continuous specimens were prepared according to the simulation. These three types of FGMs and SiC non-FGMs were compared through various thermal test and measurement. In overall judgment, the semi-continuously deposited FGM specimens out of three kinds showed excellent thermal properties as well as a good adhesion to each sub-layer.

  • PDF

Optimized Fabrication of FGMs and DIC Evaluation (FGMs의 최적화 제조와 DIC 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Recently new technological development needs the advances in the fields of new materials. The most advanced design is not useful if new material's performance is not realized adequately for bearing the service loads and conditions. FGMs suggests the reasonable solution for the those requirements because of its wide range microstructure and the continuous constitutions. It's especially good for the heat-resisting components, piezoelectricity and aerocraft fields. However the fabrication and its experimental estimation methods have not been established because of its various freedom of material's properties. Therefore it is necessary to develope the fabrication method and estimation of strength and deformation. The experiments are conducted under a four point flexural test. According to results, this study shows that FGMs is well fabricated and the deformation and strain fields are expressed very well by digital image correlation method.

Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials (기능성 경사복합재의 적층조형을 위한 분해기반 공정계획)

  • Shin K.H.;Kim S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

Functionally Gradient Materials (FGMs) for Improved Thermo-mechanical Properties (열.기계적 특성 향상을 위한 경사기능 재료 (FGM))

  • 박성용;김진홍;김문철;박찬경
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • The basic concept of functionally gradient materials (FGM) is to fabricate materials type having possibilities of applications in various fields by changing their intrinsic properties with continuous gradient. The present communication has reviewed the developments and applications of various FGMs designed for improved thermo-mechanical properties, in which the thermal protective and wear resistant materials are especially focused. Effects of thermo-mechanical properties and limits of FGMs designed for high temperature applications were mainly understood in terms of residual stress evolved from the design and fabrication. In addition, FGMs applied in structural parts were also introduced and discussed in terms of typical fabrication method for FGMs.

Effect of homogenization models on stress analysis of functionally graded plates

  • Yahia, Sihame Ait;Amar, Lemya Hanifi Hachemi;Belabed, Zakaria;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.527-544
    • /
    • 2018
  • In this paper, the effect of homogenization models on stress analysis is presented for functionally graded plates (FGMs). The derivation of the effective elastic proprieties of the FGMs, which are a combination of both ceramic and metallic phase materials, is of most of importance. The majority of studies in the last decade, the Voigt homogenization model explored to derive the effective elastic proprieties of FGMs at macroscopic-scale in order to study their mechanical responses. In this work, various homogenization models were used to derive the effective elastic proprieties of FGMs. The effect of these models on the stress analysis have also been presented and discussed through a comparative study. So as to show this effect, a refined plate theory is formulated and evaluated, the number of unknowns and governing equations were reduced by dividing the transverse displacement into both bending and shear parts. Based on sinusoidal variation of displacement field trough the thickness, the shear stresses on top and bottom surfaces of plate were vanished and the shear correction factor was avoided. Governing equations of equilibrium were derived from the principle of virtual displacements. Analytical solutions of the stress analysis were obtained for simply supported FGM plates. The obtained results of the displacements and stresses were compared with those predicted by other plate theories available in the literature. This study demonstrates the sensitivity of the obtained results to different homogenization models and that the results generated may vary considerably from one theory to another. Finally, this study offers benchmark results for the multi-scale analysis of functionally graded plates.

Fabrication of functionally graded materials of hydroxyapatite and zirconia (수산화아파타이트와 지르코니아의 경사기능 재료의 제조)

  • 김성진;조경식;박노진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.115-119
    • /
    • 2001
  • Hydroxyapatite-yttria stabilized zirconia bioceramics containing fine zirconia particles were prepared as 3-layered functionally graded materials (FGMs) using a spark plasma sintering (SPS) and hot pressing (HP) apparatuses. The pretreatment of the raw hydroxyapatite promoted the sinterability of hydroxyapatite. The maximum density of pretreated FGM composites could be obtained at lower temperature than that for he untreated FGM samples. No decomposition from hydroxyapatite to three calcium phosphate (TCP) was observed in FGMs of HAp-$ZrO_2$ sintered below $1200^{\circ}C$ for 8 min under 10 MPa by SPS. However, the transformation of the tetragonal zirconia to the cubic modification had occurred in FGMs at this temperature. The presence of zirconia i.e. stress induced transformation of zirconia may be expected to enhance the mechanical properties of HAp-$ZrO_2$ FGM. The SPS is concluded as a better method to fabricated the FGM with dense and high strength compared with HP process.

  • PDF