• Title/Summary/Keyword: FGHAZ

Search Result 10, Processing Time 0.024 seconds

A Case Study of Remaining Life Assessment for Boiler Header (고온 보일러 헤더의 잔여수명평가 사례 연구)

  • Baek, U.B.;Lee, H.M.;Park, J.S.;Kim, D.J.;Yoon, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.274-279
    • /
    • 2001
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of 1Cr-0.5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_t$-parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of $(da/dt)_{avg}$ vs. $(C_t)_{avg}$ for residual life assessment.

  • PDF

Creep-Fatigue Crack Growth at CrMo Steel Weld Interface (CrMo강 용접계면균열의 크리프-피로 균열성장거동)

  • Baek, Un-Bong;Yoon, Kee-Bong;Lee, Hae-Moo;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3088-3095
    • /
    • 2000
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of lCr-5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_r$parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of (da/dt)$_{avg}$ vs. ($C_t$)$_{avg}$ for residual life assessment.

A Study on Advanced Small Punch Test for Evaluation of Fracture Strength in Heat Resisting Stell Weldment (내열강 용접부의 파괴강도 평가를 위한 Advanced Small Punch 시험에 관한 연구)

  • 이동환;이송인;권일현;유효선
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.99-99
    • /
    • 2002
  • In order to evaluate the proper fracture strength of microstructures in a steel weldment, smaller size loading ball than used for a conventional small punch(CSP) testing is required due to regional limitation on constitutive structures. In this study, the minimized loading ball(φ 1.5mm) and bore diameter of lower die(φ 3mm) were designed for an advanced small punch(ASP) test. The results obtained from the ASP test were compared with those from a CSP testing for a X20CrMoV121 steel weldment. It was found that the ASP test clearly showed the microstructural dependance on fracture strength and ductile-brittle transition behavior of the weldment. In the ASP test, especially, the cracks tend to initiate for various directions within hemispherical indentation region of an objective structure in SP test. This indicates that the evaluation of more proper fracture strength for F.L+CGHAZ, FGHAZ and ICHAZ can be performed by means of the ASP test in a steel weldment.

A Study on Advanced Small Punch Test for Evaluation of Fracture Strength in Beat Resisting Steel Weldment (내열강 용접부의 파괴강도 평가를 위한 Advanced Small Punch 시험에 관한 연구)

  • 이동환;이송인;권일현;유효선
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • In order to evaluate the proper fracture strength of microstructures in a steel weldment, smaller size loading ball than used for a conventional small punch(CSP) testing is required due to regional limitation on constitutive structures. In this study, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for an advanced small punch(ASP) test. The results obtained from the ASP test were compared with those from a CSP testing for a X20CrMoV121 steel weldment. It was found that the ASP test clearly showed the microstructural dependance on fracture strength and ductile-brittle transition behavior of the weldment. In the ASP test, especially, the cracks tend to initiate for various directions within hemispherical indentation region of an objective structure in SP test. This indicates that the evaluation of more proper fracture strength for F.L+CGHAZ, FGHAZ and ICHAZ can be performed by means of the ASP test in a steel weldment.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Characterization of Creep-Fatigue Crack Growth Behavior for HAZ Crack Using {TEX}$C_{t}${/TEX} ($C_t$를 사용한 용접열영향부 균열의 크리프-피로 균열성장거동 특성화)

  • 백운봉;서창민;윤기봉
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • Creep-fatigue crack growth behavior at the heat affected zone of 1Cr-0.5Mo steel weldment has been experimentally studied. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the {TEX}$C_{t}${/TEX} estimated with the equation proposed by the previous finite element analysis work. It was concluded that the {TEX}$C_{t}${/TEX} values calculated from the properties of parent metal were quite comparable to the accurate {TEX}$C_{t}${/TEX} values calculated from both of weld and parent metals. Scatter of data was claimed due to the difference of exact location of the cracks in HAZ. The cracks have a tendency to change their path from the original location eventually to the relatively soft HAZ(ie, near-FGHAZ region, fine grained heat affected zone).

  • PDF

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

An Evaluation of Plastic Flow Characteristic for local structure of Weldment in Power Plant using SP test and Inverse FEA (역해석과 소형펀치 시험에 의한 발전설비 용접부의 소성유동특성 평가)

  • Baek, Seung-Se;Kwon, Il-Hyun;Kim, Hoi-Hyun;Lee, Dong-Hwan;Yang, Sung-Mo;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.308-313
    • /
    • 2004
  • SP test has been confirmed the availability, however the application of SP test is hampered because the relation of stress-strain and load-displacement is not determined definitely. This study suggested an evaluation technique of plastic flow characteristic for X20CrMoV121 steel weldment through inverse analysis using SP test and finite element analysis(FEA). From the result, good agreement was found in load-displacement curves obtained from SP test and FEA. Also, The behavior of load-displacement curve from FEA show a rule that load is increase with increasing K(strength coefficient) and displacement is increase with increasing n(work hardening index). From the inverse analysis, true stress-strain curve could be obtained for each local structure of weldment. And the CGHAZ and WM, which showed lower load- displacement behavior, have smaller work hardening index, while FGHAZ have the largest index.

  • PDF

고 Mn강의 용접 열영향부에서의 기계적 특성평가

  • Yu, Jae-Hong;Kim, Sang-Hun;Park, Yeong-Hwan;Lee, Chang-Hui
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.25-25
    • /
    • 2010
  • 8 wt.% 망간 (Mn) 이 함유된 마르텐사이트계 고 Mn강은 고강도용 강재로 산업현장에 적용될 수 있는 유용한 재료이다. 그러나, 다량의 망간의 함유로 인한 용접성 저하로 상용화를 위해서는 용접성 평가가 필요하다. 본 연구에서는 gleeble simulator 를 통해 열영향부를 재현한 후 local brittle zones(LBZs) 을 규명하였다. 모재는 Electron Probe Micro Analyzer (EPMA) 및 X-Ray Diffractometer(XRD) 로 분석결과 다량의 Mn 함유로 인해 lath마르텐사이트 미세조직과 소량의 잔류 오스테나이트로 구성되어 있었다. 용접부에서 모재까지 Vickers 경도계로 경도 분포를 측정한 결과 coarse-grained heat affected zone (CGHAZ) 에서 fine-grained heat affected zone (FGHAZ) 까지 경도 증가 후 subcritical heat affected zone (SCHAZ) 까지 급격한 경도 감소 거동을 보였다. 열영향부의 미세조직은 투과전자현미경 (TEM)으로 분석하였다. 연성취성천이온도 (DBTT) 측정을 위해 온도 구간을 상온, $0^{\circ}C$, $-20^{\circ}C$, $-40^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$으로 설정하여 charpy impact test를 시행하였다. 그 결과 coarse-grained heat affected zone(CGHAZ) 에서 조대한 결정립으로 인해 낮은 충격값을 보였다.

  • PDF

Effects of Microstructures on the Toughness of High Heat Input EG Welded Joint of EH36-TM Steel (EH36-TM강의 대입열 EGW 용접부 저온 인성에 미치는 미세 조직의 영향)

  • Choi, Woo-Hyuk;Cho, Sung-Kyu;Choi, Won-Kyu;Ko, Sang-Gi;Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • The characteristics of high heat input (342kJ/cm) EG (Electro Gas Arc) welded joint of EH36-TM steel has been investigated. The weld metal microstructure consisted of fine acicular ferrite (AF), a little volume of polygonal ferrite (PF) and grain boundary ferrite (GBF). Charpy impact test results of the weld metal and heat affected zone (HAZ) met the requirement of classification rule (Min. 34J at $-20^{\circ}C$). In order to evaluate the relationship between the impact toughness property and the grain size of HAZ, the austenite grain size of HAZ was measured. The prior austenite grain size in Fusion line (F.L+0.1 mm) was about $350{\mu}m$. The grain size in F.L+1.5 mm was measured to be less than $30{\mu}m$ and this region was identified as being included in FGHAZ(Fine Grain HAZ). It is seen that as the austenite grain size decreases, the size of GBF, FSP (Ferrite Side Plate) become smaller and the impact toughness of HAZ increases. Therefore, the CGHAZ was considered to be area up to 1.3mm away from the fusion line. Results of TEM replica analysis for a welded joint implied that very small size ($0.8\sim1.2{\mu}m$) oxygen inclusions played a role of forming fine acicular ferrite in the weld metal. A large amount of (Ti, Mn, Al)xOy oxygen inclusions dispersed, and oxides density was measured to be 4,600-5,300 (ea/mm2). During the welding thermal cycle, the area near a fusion line was reheated to temperature exceeding $1400^{\circ}C$. However, the nitrides and carbides were not completely dissolved near the fusion line because of rapid heating and cooling rate. Instead, they might grow during the cooling process. TiC precipitates of about 50 ~ 100nm size dispersed near the fusion line.