• Title/Summary/Keyword: FGF-2

Search Result 217, Processing Time 0.032 seconds

Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis

  • Lee, Hyunsook;Kang, Kyu-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.705-712
    • /
    • 2018
  • The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). In vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a $2{\times}2$ stitched area from the $4{\times}$ object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, $IC_{50}$ values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.

In vitro evaluation of the antitumor activity of axitinib in canine mammary gland tumor cell lines

  • Hye-Gyu Lee;Ga-Hyun Lim;Ju-Hyun An;Su-Min Park;Kyoung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.1.1-1.15
    • /
    • 2024
  • Background: Axitinib, a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor (VEGFR) tyrosine kinase 1,2 and 3, is used in chemotherapy because it inhibits tumor angiogenesis by blocking the VEGF/VEGFR pathway. In veterinary medicine, attempts have been made to apply tyrosine kinase inhibitors with anti-angiogenic effects to tumor patients, but there are no studies on axitinib in canine mammary gland tumors (MGTs). Objectives: This study aimed to confirm the antitumor activity of axitinib in canine mammary gland cell lines. Methods: We treated canine MGT cell lines (CIPp and CIPm) with axitinib and conducted CCK, wound healing, apoptosis, and cell cycle assays. Additionally, we evaluated the expression levels of angiogenesis-associated factors, including VEGFs, PDGF-A, FGF-2, and TGF-β1, using quantitative real-time polymerase chain reaction. Furthermore, we collected canine peripheral blood mononuclear cells (PBMCs), activated them with concanavalin A (ConA) and lipopolysaccharide (LPS), and then treated them with axitinib to investigate changes in viability. Results: When axitinib was administered to CIPp and CIPm, cell viability significantly decreased at 24, 48, and 72 h (p < 0.001), and migration was markedly reduced (6 h, p < 0.05; 12 h, p < 0.005). The apoptosis rate significantly increased (p < 0.01), and the G2/M phase ratio showed a significant increase (p < 0.001). Additionally, there was no significant change in the viability of canine PBMCs treated with LPS and ConA. Conclusion: In this study, we confirmed the antitumor activity of axitinib against canine MGT cell lines. Accordingly, we suggest that axitinib can be applied as a new treatment for patients with canine MGTs.

Long-term Cryopreservation of Mesenchymal Stem Cells Derived from Human Eyelid Adipose and Amniotic Membrane: Maintenance of Stem Cell Characteristics

  • Song, Yeon-Hwa;Park, Se-Ah;Yun, Su-Jin;Yang, Hye-Jin;Yoon, A-Young;Kim, Haek-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Human eyelid adipose-derived stem cells (hEAs) and amniotic mesenchymal stem cells (hAMs) are very valuable sources for the cell therapeutics. Both types of cells have a great proliferating ability in vitro and a multipotency to differentiate into adipocytes, osteoblasts and chondrocytes. In the present study, we evaluated their stem cell characteristics after long-time cryopreservation for 6, 12 and 24 months. When frozen-thawed cells were cultivated in vitro, their cumulative cell number and doubling time were similar to freshly prepared cells. Also they expressed stem cell-related genes of SCF, NANOG, OCT4, and TERT, ectoderm-related genes of NCAM and FGF5, mesoderm/endoderm-related genes of CK18 and VIM, and immune-related genes of HLA-ABC and ${\beta}$2M. Following differentiation culture in appropriate culture media for 2-3 weeks, both types of cells exhibited well differentiation into adipocyte, osteoblast, and chondrocyte, as revealed by adipogenic, osteogenic or chondrogenic-specific staining and related genes, respectively. In conclusion, even after long-term storage hEAs and hAMs could maintain their stem cell characteristics, suggesting that they might be suitable for clinical application based on stem cell therapy.

EFFECTS OF BONE MORPHOGENETIC PROTEIN(BMP) ON HUMAN PERIODONTAL LIGAMENT CELLS IN VITRO (Bone Morphogenetic Protein(BMP)이 인체 치주인대 세포의 활성에 미치는 효과)

  • Lee, Seong-Jin;Yoon, Hyung-Jin;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.623-634
    • /
    • 1995
  • Periodontitis is characterized by gingival inflammation and results in periodontal pocket formation with loss of the supporting alveolar bone and connective tissue around the teeth. Therapeutic modalities should therefore aim not only at eliminating the gingival inflammatory process and preventing the progression of periodontal disease but also at reestablishing and regenerating the periodontal tissue previously lost to the disease. To achieve periodontal regeneration, progenitor cells must migrate to the denuded root surface, attach to it, proliferate and mature into an organized and functional fibrous attachment apparatus. Likewise, progenitor bone cells must also migrate, proliferate, and mature in conjunction with the regenerating periodontal ligament. Significant advances have been made during the last decade in understanding the factors controlling the migration, attachment and proliferation of cells. A group of naturally occuring molecules known as polypeptide growth factors in conjunction with certain matrix proteins are key regulators of these biological events. Of these, the fibroblast growth factor(FGF), platelet-derived growth factor(PDGF) , insulin like growth factor(CIGFs), transforming growth factor(TGFs), epidermal growth factor(EGF) and bone morphogenetic growth factor(BMPs) apper to have an important role in periodontal wound healing. The purpose of this study was to determine the effects of BMP on periodontal ligament cells. Human periodontal ligament cells were cultured from extracted tooth for non-periodontal reason. Cultured periodontal ligament cells were treated with BMP. Cellular activities were determined by MTT(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and ALP(alkaline phosphatase) activity. The results were as follows ; Regardless of cultured time, cellular activities were stimulated by BMP. Also, BMP greatly increased alkaline phosphatase(ALP) in periodontal ligament cells. These results suggest that BMP not only have no cytotoxic effect on periodontal ligament cells, but also have osteogenic stimulatory effect on periodontal ligament cells.

  • PDF

A Novel Anti-cancer Agent, SJ-8029, Inhibits Angiogenesis and Induces Apoptosis

  • Yi Eui-Yeun;Jeong Eun-Joo;Song Hyun-Seok;Kang Dong-Wook;Joo Jeong-Ho;Kwon Ho-Seok;Lee Sun-Hwan;Park Si-Kyung;Chung Sun-Gan;Cho Eui-Hwan;Kim Yung-Jin
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.161-170
    • /
    • 2006
  • A new piperazine derivative, 8J-8029, is a synthetic anti-cancer agent which exhibits both microtubule and topoisomerase II inhibiting activities. In this study, we investigated the ability of 8J-8029 for anti-angiogenesis and apoptosis. 8J-8029 decreased the bFGF-induced angiogenesis in the CAM and the mouse Matrigel implants, in vivo. 8J-8029 inhibited the proliferation, migration, invasion, tube fonnation, and expression of MMP-2 in BAECs. In addition, 8J-8029 reduced the cell viability in HepG2 cells, caused the production of fragmented DNA and the morphological changes corresponding to apoptosis. 8J-8029 also elicited the release of cytochrome c and the activation of caspase-3. Taken together, these results suggest 8J-8029 may be a candidate for anti-cancer agent with the ability to inhibit the angiogenesis of endothelial cells and to induce the apoptosis of tumor cells.

  • PDF

THE EFFECT OF GENISTEIN IN ORAL SQUAMOUS CELL CARCINOMA WITH RESPECT TO THE ANGIOGENESIS AND BASEMENT MEMBRANE INVASION (구강편평세포암종에서 신생혈관화와 기저막침습에 미치는 제니스타인의 효과)

  • Kim, Yong-Hun;Yun, Pil-Young;Myoung, Hoon;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.6
    • /
    • pp.434-439
    • /
    • 2002
  • Oral squamous cell carcinoma (OSCC) is one of the most common head and neck cancers. OSCC generally has a poor prognosis due to its tendency towards a local invasion and subsequent metastasis, which is mediated by multiple proteolytic enzymes and angiogenesis. Soy products contain high levels of isoflavonoids, including the tyrosine kinase inhibitor, genistein, which has been identified as a potent inhibitor of cell proliferation and in vitro angiogenesis. The purpose of this in vitro study is to evaluate the anti-cancer effect of genistein with respect to the angiogenesis and basement membrane invasion in OSCC. The highly invasive OSCC cell line, HSC-3 cells were cultured in the presence of $10{\mu}M$ genistein for 24h. To evaluate the effects of genistein on the invasiveness and the gelatinolytic activity, in vitro invasion assay and zymography were performed. In order to evaluate the effect on the VEGF and bFGF mRNA expression, RT-PCR and northern hybridization reaction, and chemiluminescence detection were applied. The in vitro invasion assay showed that the genistein treatment reduced the cellular invasion through the artificial basement membrane and significant difference between the control group and the genistein treated group was shown in MMP-2 activity. Especially, the 62 kDa activated form of MMP-2 in the control group was 1.8 times higher than that in the genistein treated group. The results of the northern blot analyses indicated that VEGF mRNA expression in the genistein treated group was significantly down regulated. This study showed that genistein inhibits angiogenesis and reduces basement membrane invasion in OSCC. It seems to support the possibility of genistein as an anti-cancer agent.

Isolation and Characterization of Trophoblast Stem Cells-like Cells Derived from Human Term Placenta

  • Na, Kyu-Hwan;Shin, Kyung-Seon;Choi, Jong-Ho;Cha, Dong-Hyun;Kim, Gi-Jin
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • The trophectoderm is one of the earliest cell types to differentiate in the forming placenta. It is an important for the initial implantation and placentation during pregnancy. Trophoblast stem cells (TBSCs) develop from the blastocyst and are maintained by signals emanating from the inner cell mass. However, several limitations including rarity and difficulty in isolation of trophoblast stem cells derived from blastocyst still exist. To establish a model for trophoblast differentiation, we isolated TBSCs from human term placenta ($\geq$38 weeks) and characterized. Cell cycle was analyzed by measuring DNA content by FACS analysis and phenotype of TBSCs was characterized by RT-PCR and FACS analysis. TBSCs have expressed various markers such as self-renewal markers (Nanog, Sox2), three germ layer markers (hNF68, alpha-cardiac actin, hAFP), trophoblast specific markers (CDX-2, CK7, HLA-G), and TERT gene. In FACS analysis, TBSCs isolated from term placenta showed that the majority of cells expressed CD13, CD44, CD90, CD95, CD105, HLA-ABC, cytokeratin 7, and HLA-G. Testing for CD31, CD34, CD45, CD71, vimentin and HLA-DR were negative. TBSCs were shown to decrease the growth rate when cultured in conditioned medium without FGF4/heparin as well as the morphology was changed to a characteristic giant cell with a large cytoplasm and nucleus. In invasion assay, TBSCs isolated from term placenta showed invasion activities in in vivo using nude mice and in vitro Matrigel system. Taken together, these results support that an isolation potential of TBSCs from term placenta as well as a good source for understanding of the infertility mechanism.

Effect of Transplantation of Bone Marrow Stromal Cells and Dermal Fibroblasts on Collagen Synthesis (골수기질세포와 진피섬유모세포의 이식이 교원질 합성에 미치는 영향)

  • Choi, Won Il;Han, Seung-Kyu;Lee, Byung Il;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.156-162
    • /
    • 2007
  • Purpose: In the previous in vitro studies the bone marrow stromal cells(BSCs) have shown the superior effect for wound healing activity than fibroblasts, which includes cell proliferation, type I collagen synthesis, and the production of bFGF, VEGF and TGF-${\beta}$ in chronic wound healing. The aim of this study is to compare the effects of BSCs and fibroblasts on wound healing activity in vivo, especially on collagen synthesis. Methods: The fibroblasts and BSCs were harvested from patients and cultured. The cultured cells were infiltrated into the pores of polyethylene discs. These discs were divided into three groups according to the mixed cells. In groups I, II and III the discs were loaded with no cells, fibroblasts and BSCs, respectively. Twelve discs per group(total 36 discs) were made for this study. After creating 6 pockets in the back of each rats, each discs was implanted into each pockets. At three time intervals from 1 to 3 weeks, the implanted discs were harvested for the histological and quantitative analysis. The amount of collagen produced was evaluated using ELISA. Statistical comparisons were made using the Mann-Whitney U-test. Results: There was great difference in the collagen synthesis among the three groups by the 1st and 2nd weeks. The BSC group showed highest collagen level, followed by fibroblast group and no cell group(p<0.05). The 3rd week specimens also showed greater collagen amount in BSC and fibroblast groups compared to those of no cell group(p<0.05). However, there was little difference between BSC and fibroblast groups. Conclusion: This result demonstrates that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

Study on histological features and Bmp4 expression pattern during tooth formation and replacement in Xenopus laevis

  • Young-Hoon Lee;Renming Guo;Yibo Li;Byung Keon Park
    • International Journal of Oral Biology
    • /
    • v.49 no.2
    • /
    • pp.48-52
    • /
    • 2024
  • This study explores the histological features and Bmp4 expression patterns in the replaced tooth germ of Xenopus laevis. Tooth germ formation starts from the dental placode through epithelial-mesenchymal interactions, involving various signaling pathways such as Fgf, Shh, Bmp, and Wnt. In mice, Bmp4 expression in the dental placode inhibits Pax9 expression in the dental mesenchyme. Although absent in the presumptive dental lamina of birds and toothless mammals, Bmp4 remains conserved in reptiles and fish owing to gene duplication. However, its expression in amphibian tooth germs is poorly understood. Three-month-old X. laevis were employed in this study. Initially, samples underwent paraffin embedding and were sectioned into 5 or 12 ㎛ ribbons for H&E staining and in situ hybridization, respectively. Results revealed teeth appearing in two maxillary rows: the labial side, with prefunctional and functional teeth, and the lingual side, with replaced tooth germs behind functional teeth. Enameloid was observed between the inner dental epithelium and dental mesenchyme at the cap or early bell stages, whereas enamel and dentin formed during the late bell or mineralization stages from the replaced tooth germ. Bmp4 expression was evident in the inner dental epithelium (ameloblasts), dental papilla (odontoblasts), stellate reticulum, and Hertwig's epithelial root sheath. Overall, these findings highlight the conservation of Bmp4 expression in X. laevis tooth development.

Effects of Black Soybean and Fermented Black Soybean Extracts on Proliferation of Human Follicle Dermal Papilla Cells (검은콩과 발효검은콩 추출물이 인간 모유두 세포 성장에 미치는 효과)

  • Choi, Ji-Hye;Lee, Myoungsook;Kim, Hyun Jung;Kwon, Jung Il;Lee, Yunkyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.671-680
    • /
    • 2017
  • This study was conducted to examine the effects and potential mechanisms of action of black soybean extracts and fermented black soybean extracts by Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animals subsp. lactis BB-12 (BB-12) on proliferation of human follicle dermal papilla cells (HFDPC). We examined changes in pH, total polyphenol, sugar, and reducing sugar contents according to fermentation period of black soybean extracts. Assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was performed to determine cell toxicity levels of the four black soybean extracts [black soybean water extract (BWE), black soybean ethanol extract (BEE), fermented BWE (F-BEW), and fermented BEE (F-BEE)]. Changes in mRNA expression levels of hair growth promoting factors and hair growth inhibiting factors by the four black soybean extracts were measured by real-time PCR. In addition, phosphorylation levels of mitogen-activated protein kinase family proteins were measured by western blot analysis. As a result, fermentation of black soybeans significantly reduced pH, total polyphenols, and sugar/reducing sugar contents. All four black soybean extracts showed no cellular toxicity in HFDPC. In fact, BEE significantly enhanced cell viability of HFDPC at $100{\mu}g/mL$ compared to control. BWE, BEE, and BWE-F significantly increased mRNA expression of vascular endothelial growth factor, and all four extracts increased mRNA expression of fibroblast growth factor. However, mRNA expression levels of apoptosis-related genes were not affected by black soybean extracts in HFDPC. Furthermore, BWE, BEE, and BWE-F significantly increased phosphorylation levels of extracellular signal-regulated kinase compared to control. Taken together, we demonstrated that black soybean extracts enhanced proliferation of human follicle dermal papilla cells partially via activation of hair growth promoting factors, although no particular significant effects on proliferation were observed by fermentation of black soybeans.