• Title/Summary/Keyword: FGCPW-Microstrip Transition

Search Result 2, Processing Time 0.018 seconds

Ultra-Wideband Microstrip-to-Finite Ground Coplanar Waveguide Transition for Millimeter-Wave Systems (밀리미터파 시스템용 초광대역 마이크로스트립-FGCPW 전이구조 설계)

  • Kim, Young-Gon;Kim, Hong-Rak;Jung, Bae-Ho;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.701-708
    • /
    • 2016
  • A new design for an ultra-wideband microstrip-to-FGCPW(Finite Ground Coplanar Waveguide) transition is presented. The proposed transition provides the electric field and impedance matching between adjacent transmission lines by ground shaping. The transition is designed on the analytical expressions of whole transitional structure. Conformal mapping is applied to obtain the characteristic impedance of FGCPW with bottom aperture within 3.3 % accuracy as compared with the EM-simulation results. As design example, the fabricated transition in back-to-back configuration provides insertion loss less than 1 dB per transition and return loss better than 10 dB for frequencies from 9 GHz to over 40 GHz.

A Low Insertion Loss CBFGCPW-Microstrip Transition and Its Application to MIC Module Integration (저 손실을 갖는 CBFGCPW-Microstrip 천이 구조의 해석 및 MIC 모듈 집적화에 응용)

  • Lim, Ju-Hyun;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.809-818
    • /
    • 2007
  • Generally, carriers on which microwave circuits are mounted are used as building blocks of MIC module for the convenience of MIC assembly and the unit module characterization. However the interconnection of the microstrip-based carriers by wire bonding causes the serious problem of mismatch and results in the higher insertion loss as frequency becomes higher. The gap and the depth between carriers are considered as the main reason of the degradation. The CPW can be the solution to cope with such problem considering its field are dominantly concentrated on the top plane. In this paper, we propose and demonstrate the CBFGCPW to microstrip transition with the low insertion loss that can be applied without causing the MIC carrier interconnection problem.