• 제목/요약/키워드: FG nano-beam

검색결과 68건 처리시간 0.024초

A review on dynamic characteristics of nonlocal porous FG nanobeams under moving loads

  • Abdulaziz Saud Khider;Ali Aalsaud;Nadhim M. Faleh;Abeer K. Abd;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.15-24
    • /
    • 2024
  • This research presents dynamical reaction investigation of pore-dependent and nano-thickness beams having functional gradation (FG) constituents exposed to a movable particle. The nano-thickness beam formulation has been appointed with the benefits of refined high orders beam paradigm and nonlocal strain gradient theory (NSGT) comprising two scale moduli entitled nonlocality and strains gradient modulus. The graded pore-dependent constituents have been designed through pore factor based power-law relations comprising pore volumes pursuant to even or uneven pore scattering. Therewith, variable scale modulus has been thought-out until process a more accurate designing of scale effects on graded nano-thickness beams. The motion equations have been appointed to be solved via Ritz method with the benefits of Chebyshev polynomials in cosine form. Also, Laplace transform techniques help Ritz-Chebyshev method to obtain the dynamical response in time domain. All factors such as particle speed, pores and variable scale modulus affect the dynamical response.

Static analysis of nonlinear FG-CNT reinforced nano-composite beam resting on Winkler/Pasternak foundation

  • Mostefa Sekkak;Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Mohamed Bourada;Mahmoud M Selim;Hosam A. Saad
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.509-519
    • /
    • 2024
  • In this study, the static analysis of carbon nanotube-reinforced composites (CNTRC) beams resting on a Winkler-Pasternak elastic foundation is presented. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. To study the effect of carbon nanotubes distribution in functionally graded (FG-CNT), we introduce in the equation of CNT volume fraction a new exponent equation. The SWCNTs are assumed to be aligned and distributed in the polymeric matrix with different patterns of reinforcement. The rule of mixture is used to describe the material properties of the CNTRC beams. The governing equations were derived by employing Hamilton's principle. The models presented in this work are numerically provided to verify the accuracy of the present theory. The analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Many parameters are investigated, such as the Pasternak shear modulus parameter, the Winkler modulus parameter, the volume fraction, and the order of the exponent in the volume fraction equation. New results obtained from bending and stresses are presented and discussed in detail. From the obtained results, it became clear the influence of the exponential CNTs distribution and Winkler-Pasternak model improved the mechanical properties of the CNTRC beams.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.589-606
    • /
    • 2018
  • The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

Computational mathematical modeling of the nonlinear vibration characteristics of AFG truncated conical nano pipe based on the nonlocal strain gradient theory

  • Zhang, Ruihua;Cao, Yiqing
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.599-615
    • /
    • 2022
  • In the present paper, the numerical dynamic analysis of a functionally graded nano-scale nonuniform tube was investigated according to the high-order beam theory coupled with the nonlocal gradient strain theory. The supposed cross-section is changed along the pipe length, and the material distribution, which combines both metal and ceramics, is smoothly changed in the pipe length direction, which is called axially functionally graded (AFG) pipe. Moreover, the porosity voids are dispersed in the cross-section and the radial pattern that the existence of both material distribution along the tube length and porosity voids make a two-dimensional functionally graded (2D-FG) truncated conical pipe. On the basis of the Hamilton principle, the governing equations and the associated boundary conditions equations are derived, and then a numerical approach is applied to solve the obtained equations.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.201-217
    • /
    • 2018
  • In the present research, wave propagation characteristics of a rotating FG nanobeam undergoing rotation is studied based on nonlocal strain gradient theory. Material properties of nanobeam are assumed to change gradually across the thickness of nanobeam according to Mori-Tanaka distribution model. The governing partial differential equations are derived for the rotating FG nanobeam by applying the Hamilton's principle in the framework of Euler-Bernoulli beam model. An analytical solution is applied to obtain wave frequencies, phase velocities and escape frequencies. It is observed that wave dispersion characteristics of rotating FG nanobeams are extremely influenced by angular velocity, wave number, nonlocal parameter, length scale parameter, temperature change and material graduation.

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • 제36권2호
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.