• Title/Summary/Keyword: FFT(Frequency Fourier Transform)

Search Result 325, Processing Time 0.025 seconds

Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum

  • Reza, Ahmed Galib;Rhee, June-Koo Kevin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Terabit-per-second (Tb/s) transmission capacity for the next generation of long-haul communication networks can be achieved using multicarrier optical super-channel technology. In an elastic orthogonal frequency division multiplexing (OFDM) super-channel transmission system, demultiplexing a portion of an entire spectrum in the form of a subband with minimum power is critically required. A major obstacle to achieving this goal is the analog-to-digital converter (ADC), which is power-hungry and extremely expensive. Without a proper ADC that can work with low power, it is unrealistic to design a 100G coherent receiver suitable for a commercially deployable optical network. Discrete Fourier transform (DFT) is often seen as a primary technique for understanding partial demultiplexing, which can be attained either optically or electronically. If fairly comparable performance can be achieved with an all-optical DFT circuit, then a solution independent of data rate and modulation format can be obtained. In this paper, we investigate two distinct OFDM super-channel receiver models, based on electronic and all-optical DFT-technologies, for partial carrier demultiplexing in a multi-Tb/s transmission system. The performance comparison of the receivers is discussed in terms of bit-error-rate (BER) performance.

Interference Mitigation by High-Resolution Frequency Estimation Method for Automotive Radar Systems (고해상도 주파수 추정 기법을 통한 차량용 레이더 시스템의 간섭 완화에 관한 연구)

  • Lee, Han-Byul;Choi, Jung-Hwan;Lee, Jong-Ho;Kim, Yong-Hwa;Kim, YoungJoon;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.254-262
    • /
    • 2016
  • With the increased demand for automotive radar systems, mutual interference between vehicles has become a crucial issue that must be resolved to ensure better automotive safety. Mutual interference between frequency modulated continuous waveform (FMCW) radar system appears in the form of increased noise levels in the frequency domain and results in a failure to separate the target object from interferers. The traditional fast fourier transform (FFT) algorithm, which is used to estimate the beat frequency, is vulnerable in interference-limited automotive radar environments. In order to overcome this drawback, we propose a high-resolution frequency estimation technique for use in interference environments. To verify the performance of the proposed algorithms, a 77GHz FMCW radar system is considered. The proposed method employs a high-resolution algorithm, specially the multiple signal classification and estimation of signal parameters via rotational invariance techniques, which are able to estimate beat frequency accurately.

Analysis of Smart Antenna Performance Improving the Robustness of OFDM to Rayleigh Fading (레일리 페이딩 내구성을 개선시키는 OFDM 스마트안테나의 성능 분석)

  • Hong, Young-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • In order to augment the robustness of OFDM system to Rayleigh multipath fading, there exist two smart antenna algorithms, namely, Pre-FFT smart antenna and Post-FFT smart antenna. After the mathematical modeling of both smart antenna algorithms, computer simulations have been carried to compare and analyze the performance of generalized eigen problem based Pre-FFT algorithm and the performance of Wiener solution based Post-FFT algorithm. It has been shown that the Post-FFT smart antenna far outperforms the Pre-FFT smart antenna due to the computational complexities. Especially it is so when the multipath signal arrives at beyond the guard interval and a rich co-channel interferer is introduced. Performance of a subcarrier clustering method proposed to lessen the computing load has been compared to that of a typical Wiener solution based Post-FFT smart antenna. Performance comparison between MRC(Maximum Ratio Combining) diversity based Post-FFT algorithm and typical Post-FFT algorithm has also been carried.

Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition (화염 전달함수 및 DMD 기법을 이용한 모형 가스터빈의 연소불안정성 평가)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • To evaluate the combustion instability of a gas turbine combustor, the DMD technique was applied. The mode frequency results for each fuel composition were compared with FFT(Fast Fourier Transform) results. The damping coefficient, which is a quantitative parameter for combustion instability, was evaluated for 5 experimental cases. The flame transfer function (FTF) was calculated in the most unstable test case. In deriving the FTF, gain and phase were calculated using DMD technique. As a result of the analysis of the OH radical perturbation of the DMD, the heat release fluctuation was the highest at 100 Hz, at which the highest value of gain is observed. The frequency of FFT and FTF were different. In order to clarify the reason for this, FTF for various resonance frequencies was performed and it shows that the pattern of gain was similar to FFT.

Detection of low frequency tonal signal of underwater radiated noise via compressive sensing (압축센싱 기법을 적용한 선박 수중 방사 소음 신호의 저주파 토널 탐지)

  • Kim, Jinhong;Shim, Byonghyo;Ahn, Jae-Kyun;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Compressive sensing allows recovering an original signal which has a small dimension of the signal compared to the dimension of the entire signal in a short period of time through a small number of observations. In this paper, we proposed a method for detecting tonal signal which caused by the machinery component of a vessel such as an engine, gearbox, and support elements. The tonal signal can be modeled as the sparse signal in the frequency domain when it compares to whole spectrum range. Thus, the target tonal signal can be estimated by S-OMP (Simultaneous-Orthogonal Matching Pursuit) which is one of the sparse signal recovery algorithms. In simulation section, we showed that S-OMP algorithm estimated more precise frequencies than the conventional FFT (Fast Fourier Transform) thresholding algorithm in low SNR (Signal to Noise Ratio) region.

An Adaptive SLM Scheme Based on Peak Observation for PAPR Reduction in OFDM Systems (OFDM 시스템에서 PAPR 감소를 위한 피크 신호 관찰 기반의 적응적 SLM 기법)

  • Yang, Suck-Chel;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1142-1148
    • /
    • 2007
  • In this paper, we propose ASLM (Adaptive Selective Mapping; ASLM) scheme based on peak observation for PAPR (Peak-to-Average Power Ratio) reduction of OFDM (Orthogonal Frequency Division Multiplexing) signals. The proposed scheme is composed of three steps: peak scaling, sequence selection, and SLM procedures. In the first step, the peak signal samples in the IFFT (Inverse Fast Fourier Transform) outputs of the original input sequence are scaled down. In the second step, the sub-carrier positions where the power difference between the original input sequence and the FFT output of the scaled signal is large, are identified. Then, the phase sequences having the maximum number of phase-reversed sequence words only for these positions are selected. Finally, the generic SLM procedure is performed by using only the selected phase sequences for the original input sequence. Simulation results show that the proposed scheme significantly reduces the complexity in terms of IFFT and PAPR calculation than the conventional SLM, while maintaining the PAPR reduction performance.

Analysis of Dynamic Instability Characteristic of EP Shell Structures under Sinusoidal Excitations (정현파 하중을 받는 EP(Elliptic Paraboliodal)쉘 구조물의 동적 불안정 특성 분석)

  • Kim, Seung-Deog;Kim, Doo-Ri
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.127-134
    • /
    • 2010
  • The dynamic instability for snapping phenomena has been studied by many researchers. Few paper deal with the dynamic bucking under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of dynamic instability when shallow EP(Elliptic Paraboliodal) shell of two degree of freedom are subjected to sinusoidal excitation with direct snapping and indirect snapping. By using Newmark-$\beta$ method, we can get the nonlinear response, and characteristics of the dynamic instability through the running response spectrum by FFT(fast Fourier Transform) and attractors are compared in the phase plane. Dynamic buckling loads are strongly influenced by the relationships between the natural frequency of structures and the dominant frequency of incident excitations.

  • PDF

Performance Analysis of digital phase shifter using Hilbert transform (힐버트 변환을 이용한 디지털 위상천이기의 성능 분석)

  • Seo, Sang Gyu;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • In this paper digital phase-shifter for multi-arm spiral antennas was designed by using Hilbert transform. All frequency components in input signal are phase-shifted for 90 degree by Hilbert transform, and the transform is implemented by FIT and IFIT. Digital phase-shifter generates two signals with phase difference of 90 degree by using Hilbert transform from input signals sampled by analog-digital converter(ADC), and then the input signal is phase-shifted for a given phase by using two signals. Hilbert transform based on digital phase-shifter is designed by Xilinx System generator, and the effects of input noise, FIT point, sampling period, initial phase of input signal, and shifted phase are simulated and its results are compared with Matlab results.

Study on Acoustic Characteristics of the Watermelon (수박의 음향특성에 관한 연구)

  • 김만수;최동수;이영희;조영길
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.57-66
    • /
    • 1998
  • This study was conducted to investigate the relationships between parameters affecting internal quality of watermelon and its acoustic characteristics. The measuring and analyzing system was established to study the acoustic characteristics of watermelon. Algorithms for analyzing sound signals were developed. Sound signals which was detected with the microphone were filtered, and their spectrum was computed by means of the Fast Fourier Transform. As watermelon changed from the unripe stage to ripe, acoustic waves in time domain became complicated, and several components appeared in frequency domain. The correlationship was investigated between some parameters affecting internal quality of the watermelon and several peak frequencies. Results indicated that weight, density and sugar content had high correlations with several frequencies(the first peak frequency, the second peak frequency, and the third peak frequency). And the sugar content and the volume of the watermelon were highly correlated with the third peak frequency.

  • PDF

2N-Point FFT-Based Inter-Carrier Interference Cancellation Alamouti Coded OFDM Method for Distributed Antennas systems (분산안테나 시스템을 위한 2N-점 고속푸리에변환 기반 부반송파 간 간섭 자체제거 알라무티 부호화 직교주파수분할다중화 기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1030-1038
    • /
    • 2013
  • The proposed Alamouti coded OFDM effectively cancels Inter Carrier Interference (ICI) due to frequency offset between distributed antennas. The conventional Alamouti coded OFDM schemes to mitigate ICI utilize N-point Inverse Fast Fourier Transform/Fast Fourier Transform (IFFT/FFT) operations for OFDM modulation and demodulation processes with total N subcarriers. However, the performance degrades because ICI is also repeated in N periods due to the property of N-point IFFT/FFT operation. In order to avoid this problem, null data are used at the subcarriers with large ICI and thus, data rate decreases. The proposed scheme employs 2N-point IFFT/FFT instead of N-point IFFT/FFT in order to increase sampling rate. By increasing sampling rate, the amount of interference significantly decreases because the period of ICI also increases. The proposed scheme increases the data rate and improves the performance by reducing amount of ICI and the number of null-data. Furthermore, the gain of the performance and data rate of the proposed scheme is significant with higher modulation such as 16-Quadarature Amplitude Modulation (QAM) or 64-QAM.