• Title/Summary/Keyword: FESS(Flywheel energy storage system)

Search Result 34, Processing Time 0.023 seconds

Modeling and Position-Sensorless Control of a Dual-Airgap Axial Flux Permanent Magnet Machine for Flywheel Energy Storage Systems

  • Nguyen, Trong Duy;Beng, Gilbert Foo Hock;Tseng, King-Jet;Vilathgamuwa, Don Mahinda;Zhang, Xinan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.758-768
    • /
    • 2012
  • This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Design of Magnetic Levitating Flywheel Energy Storage System (자기부상형 플라이휠 에너지 저장 장치의 자기베어링 시스템 설계)

  • Yoo, S.;Mo, S.;Choi, S.;Lee, J.;Han, Y.;Noh, M.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.963-967
    • /
    • 2007
  • Flywheel energy storage systems (FESS) have advantages over other types of energy storage methods due to their infinite charge/discharge cycles and environmental friendliness. The system has two radial bearings and one hybrid-thrust bearing. Thrust hybrid-type bearing use permanent magnet to relieve gravity load. The radial bearings were designed to provide sufficient force slew rate considering the unbalance disturbance at the operating speeds. In this paper, we will derive dynamic model of hybrid-type bearing using permanent magnet for thrust bearing and present simulation and stability of the model.

  • PDF

Dynamic Behavior of a Flywheel Rotor System Using Superconductor Bearings (초전도베어링을 이용한 플라이훨 로터의 동특성)

  • Kim, Young-Cheol;Choi, Sang-Kyu;Lee, Jun-Sung;Han, Young-Hee;Sung, Tae-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1071-1077
    • /
    • 2000
  • Recently, several attempts have been made to apply high Tc superconductor bearings of thrust type to flywheel energy storage system (FESS) throughout the world. Radial type superconductor bearings, however, have never been tried to the real FESS. KEPRI has developed its own radial type bearings and is now currently applying them to a FESS designed by KIMM, for the first time. In this paper preliminary test results of bearing performance and dynamic behavior of the flywheel rotor system mounted on them are presented. The dynamic properties, i.e, stiffness and damping, of the superconductor bearings were experimentally estimated using the static loading test as well as the impact test. The test revealed that stiffness value of the present superconductor bearings is about 67,700N/m and the damping value 29Ns/m. It was also found out that these bearings have some levitation drift problems due to excessive vibrations encountered while passing through the critical speeds. With recommend backup bearings to limit the vibration amplitudes of the rotor it is predicted that the flywheel rotor will show stable operations in the design speed range.

  • PDF

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

Design of Low Power Consumption Hybrid Magnetic Bearing for Flywheel Energy Storage System (플라이휠 에너지 저장장치를 위한 저 전력소모 하이브리드 마그네틱 베어링의 설계)

  • Kim, Woo-Yeon;Lee, Jong-Min;Bae, Yong-Chae;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.717-726
    • /
    • 2010
  • For the application into a 1 kWh flywheel energy storage system(FESS), this paper presents the design scheme of radial and axial hybrid magnetic bearings which use bias fluxes generated by permanent magnets. In particular, the axial hybrid magnetic bearing is newly proposed in this paper, in which a permanent magnet is arranged in axial direction so that it can support the rotor weight as well as provide a bias flux for axial magnetic bearing. Such hybrid magnetic bearings consume very low power, compared with conventional electromagnetic bearings. In this paper, to stably support a 140 kg flywheel rotor without contact, design process is explained in detail, and magnetic circuit analysis and three-dimensional finite element analysis are carried out to determine the design parameters and predict the performance of the magnetic bearings.

PWM Inverter System Control for Flywheel Energy Storage System using PDFF(Pseudo-Derivative Control with Feedforward Gain) Algorithm (PDFF 기법을 적용한 플라이휠 에너지 저장장치용 PWM 인버터 시스템 제어)

  • Park, Jong-Chan;Jeong, Byung-Hwan;Choi, Hee-Ryong;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.267-275
    • /
    • 2007
  • This paper presents about energy input and output modeling for a flywheel energy storage system that can store and supply mechanical energy, which is emerging as one of clean energy sources, and the analysis and control of a PWM inverter system. Moreover, this paper describes flywheel's characteristics related to variations of mechanical and electrical parameters like as voltage and current versus speed characteristics formed as numerical formula and thus simulate behaviour-status of flywheel energy. Also for comparison and analysis between PI control and PDFF control, the modeling, design and analysis to the single-phase full bridge inverter with double loop feedback control is accomplished through numerical description and simulation. Finally, under load condition 0.1[pu], 1[pu]. it is validated that harmonic characteristics for voltage and current wave is controlled within 5% below even dynamics condition.

Analysis of Control Stability and Performance of Magnetically-Levitated Flywheel Energy Storage System using Flexible Rotor Model (유연체 회전축 모델을 이용한 자기부상형 플라이휠 에너지 저장장치의 제어시스템 안정성 및 성능 해석)

  • Yoo, Seong-Yeol;Lee, Wook-Ryun;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.258-263
    • /
    • 2009
  • This paper describes an analysis of the stability and performance of a large-capacity flywheel energy storage system (FESS) supported by active magnetic bearings. We designed and manufactured the system that can store up to 5kWh of usable energy at the maximum speed of 18,000 rpm. In order to analyze the stability of the systems accurately, we derived a rigid body rotor model, flexible rotor model using finite-element method, and a reduced-order model using modal truncation. The rotor model is combined with those of active magnetic bearings, amplifiers, and position sensors, resulting in a system simulation model. This simulation model is validated against experimental measurements. The stability of the system is checked from the pole locations of the closed-loop transfer functions. We also investigated the sensitivity function to quantify the robustness of the systems to the disturbances such as mass imbalance and sensor noises.

  • PDF

Enhancement of Power System Stability using Flywheel Energy Storage System (플라이휠 에너지 저장장치를 이용한 전력계통의 안정도 향상)

  • Lee, Jeong-Phil;Han, Snag-Chul;Han, Young-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.79.2-79.2
    • /
    • 2011
  • 플라이 휠 에너지 저장장치(Flywheel Energy Storage System: FESS)는 전기 에너지를 회전 운동 에너지로 저장하였다가 필요시 회전 운동에너지를 전기 에너지로 변환하여 재사용 가능한 에너지 저장장치 이다. 최근 전력 변환 기술의 발전으로 인하여 플라이휠 에너지 저장 장치의 에너지 입출력 속도가 빨라지고 대용량의 에너지를 저장할 수 있게 되었다. 본 논문에서는 이러한 플라이휠 에너지 저장 장치의 전력 입출력 특성을 이용하여 전력 시스템에서 발생하는 저주파 진동(Low frequency oscillation)을 억제하는 방안을 제시 하여 안정도를 향상 시키고자 하였다. 전력 시스템은 발전조건, 전송조건, 부하조건에 따라 동작 조건이 지속적으로 변하고 있다. 이러한 동작 환경 변화는 전력 시스템에 대한 수학적인 표현과 실제 전력계통간의 차이가 발생하기 때문에 정확한 제어 목적을 달성하기가 힘들다. 따라서 본 논문에서는 제어기 설계 단계에서 전력 계통의 불확실성을 고려할 수 있는 $H_{\infty}$ 제어 기법을 이용하여 플라이휠 에너지 저장장치를 위한 강인 제어기를 설계 하였다. 제안한 플라이휠 에너지 저장장치의 강인 제어기의 유용성을 입증하기 위하여 1기 무한대 모선에 적용한 결과를 비선형 시뮬레이션을 통하여 다양한 외란이 발생한 경우에 외란 억제 성능과 강인성에 대하여 고찰 하였으며, 제안한 방식이 기존의 전력계통 안정화 장치(Power system stabilizer: PSS) 보다 효율적이며 전력계통의 안정도 향상에 크게 기여함을 보이고자 하였다.

  • PDF

Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device (플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석)

  • 최상규;김영철;경진호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF