• Title/Summary/Keyword: FEM Correlation

Search Result 90, Processing Time 0.206 seconds

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

A Study on the Fatigue Line with Plastic Rotaional Angle for Steel Structure of the Beam-to-Column Joints (기둥-보 연결 강구조물의 소성회전각에 의한 피로곡선 연구)

  • Kong, Byung Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.221-232
    • /
    • 1998
  • This study presents a fatigue line with a plastic rotational angle to a great extent of plastic strain of Low-Cycle-Fatigue period, such as earthquake, etc. This fatigue line with a plastic rotational angle is measured and analysed more simply in practice rather than Woehler's fatigue line which is developed in stress variation of the structure. It shows that the slope of fatigue line with a plastic rotational angle is equal to that with plastic strain through the experiments by proving the correlation that the plastic strain ratio is directly proportional to the plastic rotational angle in plastic hinge. The theory is induced by Manson and Coffin strain fatigue line, and the experiments are tested by ECCS. The location of the plastic hinge is achieved and accurate plastic strain ratio is calculated through FEM.

  • PDF

A Numerical Study of the Residual Hydrogen Concentration in the Weld Metal (용접금속 잔류수소농도의 수치해석 연구)

  • Yoo, Jinsun;Ha, Yunsok;S.R., Rajesh
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.42-46
    • /
    • 2016
  • Hydrogen assisted cracking (HAC) is one of the most complicated problem in welding. Huge amount of studies have been done for decades. Based on them, various standards have been established to avoid HAC. But it is still a chronic problem in industrial field. It is well known that the main causes of the hydrogen crack are residual stress, crack susceptible micro structures and a certain critical level of hydrogen concentration. Even though the exact generating mechanism is unclear till today, it has been reported that the hydrogen level in the weld metal should be managed less than a certain amount to prevent it. Matsuda studied that the residual hydrogen level in the weld metal can be varied even if the initial hydrogen content is same. It is also insisted in this report that the residual hydrogen concentration is in stronger correlation with hydrogen crack than the initial hydrogen content. But, in practical point of view, the residual hydrogen is still hard to consider because measuring hydrogen level is time and cost consuming process. In this regard, numerical analysis is the only solution for considering the residual hydrogen content. Meanwhile, Takahashi showed the possibility of predicting the residual hydrogen by a rigorous FE analysis. But, few commercial software suitable for solving the weld metal hydrogen has been reported yet. In this study, two dimensional thermal - hydrogen coupled analysis was developed by using the commercial FE software MARC. Since the governing equation of the hydrogen diffusion is similar to the heat transfer, it is shown that the heat transfer FE analysis in association with hydrogen diffusion property can be used for hydrogen diffusion analysis. A series of simulation was performed to verify the accuracy of the model. For BOP (Bead-On-Plate) and the multi-pass butt welding simulations, remaining hydrogen contents in the weld metal is well matched with measurements which are referred from Kim and Masamitsu.

Study on the Optimization of Parameters for Burring Process Using 980MPa Hot-rolled Thick Sheet Metal (980MPa급 열연 후판재 버링 공정의 변수 최적화 연구)

  • Kim, S.H.;Do, D.T.;Park, J.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.291-300
    • /
    • 2021
  • Currently, starting with electric vehicles, the application of ultra-high-strength steel sheets and light metals has expanded to improve mileage by reducing vehicle weight. At a time when internal combustion engine vehicles are rapidly changing to electric vehicles, the application of ultra-high-strength steel is expanding to satisfy both weight reductions and the performance safety of the chassis parts. There is an urgent need to improve the quality of parts without defects. It is particularly difficult to estimate the part formability through the finite element method (FEM) in the burring operation, so product design has been based on the hole expansion ratio (HER) and experience. In this study, design of experiment (DOE), analysis of variance (ANOVA), and regression analysis were combined to optimize the formability by adjusting the process variables affecting the burring formability of ultra-high-strength steel parts. The optimal variables were derived by analyzing the influence of variables and the correlation between the variables through FE analysis. Finally, the optimized process parameters were verified by comparing experiment with simulation. As for the main influence of each process variable, the initial hole diameter of the piercing process and the shape height of the preforming process had the greatest effects on burring formability, while the effect of a lower round of punching in the burring process was the least. Moreover, as the diameter of the initial hole increased, the thickness reduction rate in the burring part decreased, and the final burring height increased as the shape height during preforming increased.

Random Variable State and Response Variability (확률변수상태와 응답변화도)

  • Noh, Hyuk-Chun;Lee, Phill-Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1001-1011
    • /
    • 2006
  • It is a general agreement that exact statistical solutions can be found by a Monte Carlo technique. Due to difficulties, however, in the numerical generation of random fields, which satisfy not only the probabilistic distribution but the spectral characteristics as well, it is recognized as relatively difficult to find an exact response variability of a structural response. In this study, recognizing that the random field assumes a constant over the domain under consideration when the correlation distance tends to infinity, a semi-theoretical solution of response variability is proposed for general structures. In this procedure, the probability density function is directly used. It is particularly noteworthy that the proposed methodology provides response variability for virtually any type of probability density function, and has capability of considering correlations between multiple random variables.

An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis (CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발)

  • Kwon, Yangsu;Kwak, Hyo-Gyoung;Hwang, Ju-Young;Kim, Jin-Kook;Kim, Jong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • CFT column has a lot of structural advantages due to the composite behavior between in-filled concrete and steel tube. This paper deals with the development of an effective numerical model which can consider the bond-slip behavior between both components of concrete matrix and steel tube without taking double nodes. Since the applied axial load to in-filled concrete matrix is delivered to steel tube by the confinement effect and the friction, the governing equation related to the slip behavior can be constructed on the basis of the force equilibrium and the compatability conditions. In advance, the force and displacement relations between adjacent two nodes make it possible to express the slip behavior with the concrete nodes only. This model results in significant savings in the numerical modeling of CFT columns to take into account the effect of bond-slip. Finally, correlation studies between numerical results and experimental data are conducted to verifying the efficiency of the introduced numerical model.

한냉혈관반응 측정에 관한 연구

  • 정종만;이영숙
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.203-211
    • /
    • 1997
  • 본 연구는 기온$15^{\circ}C{\pm}1^{\circ}C$ $26^{\circ}C{\pm}1^{\circ}C$,습도$55%{\pm}5%$ 환경조건에서 손가락 끝마디 부분을 얼음물에 침지시킨후 구강온과 4부위 피부온, 손가락끝 피부온, 전신온냉감, 전신쾌적감, 손가락 끝 동통감의 변화를 젊은 남자 피험자와 노인남자 피험자를 대상으로 비교측정하고자 하였다. 본 학회에서는 젊은 남자피험자 그룹에 대하여 보고하고자 한다. 결과는 다 음과 같다. $15^{\circ}C{\pm}1^{\circ}C$에서 4부위 피부온을 보면 가슴과 상완은 손가락끝 침지시 약간 하강하고 다시 상승하지만 대퇴와 하퇴에서는 하강하고 그 상태가 유지된다. 특히 하퇴의 경우는 급격히 하강하는 경향을 보이고 있다. 손가락끝 피부온은 손가락 침지와 동시에 급격한 하강을 나타내나 손가락을 꺼낸후에 손가락 침지전의 온도로 회복되지는 않았다. 평균피부온을 보면 손가락 침지시 하강하는 경향을 보이고 있다. 전신 쾌적감은 약간 불쾌하게 나타났고, 전신온냉감은 서늘하다고나타났고 손가락끝의 동통 감은 매우 아프다고 나타났다. $26^{\circ}C{\pm}1^{\circ}C$에서 4부위 피부온을 보면 가슴 상완대퇴 하퇴 모두 손가락끝 침지시 약간 하강하고 낮은 상태로 유지되는 경향을 보이고 있다. 손가락끝 피부온은 손가락 침지시 급격한 하강을 나타내었고 손가락을 꺼낸후에도 침지의 온도로 회복이 되었다. 평균피부온은 손가락 침지후에 약간 하강하였지만 큰 차이는 없었다. 전신쾌적감은 약간 쾌적하게 나타났고 전신온냉감은 약간 따뜻하다라고 나타났으며 손가락끝의 동통감은 약간 아프다고쪽으로 나타났다.때문에 이를 디자인에 곧바로 적용시키기 어려운 점이 있다. 이에 본 연구는 기존의 바용성 평가를 위한 분석도구들이 갖는 문제 점들 해결하여 제품의 사용자 인터페이스 디자인 개발과정에서 활용할 수 있는 평가 분석도구를 개발하는 것을 목표로 한다. 이를 위해 첫째, 다양한 유형의 정보를 포함하는 비디오 정보를 선정하였따. 둘째, 데이터를 다양한 측면에서 추출할 수 있는 Data logger를 개발하였다. 셋째, 데이터를 시각적으로 정리하고 분석할 수 있는 도구를 제안한다. 마지막으로 인터페이스 디자인에서 여러 가지 디자인안을 도출해 내는 작업에 이용할 수 있는 종합화과정을 개발한다. 이러한 일련의 과정이 통합된 컴퓨터 시스템 안에서 이루어지도록 프로그램을 개발하여 정보의 유용성을 높일 수 있도록 한다.at the entropy index as a measurement of inter-business relatedness is not significant but technological relatedness index is significant. OLS estimates on pooled data were considerably different from FEM or REM estimates on panel data. By introducing interaction effect among the three variables for business portfolio properties, we obtained three findings. First, only VI (Vertical integration) has a significant positive correlation with ROS. Second, when using TFP growth as an depende

  • PDF

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

A study on the correlation between the degree of elasticity uniformity and the dynamic performance in the overhead contact lines (전차선로 탄성도 불균일율과 동역학적 성능과의 관계에 대한 연구)

  • Park, Sa-Hoon;Kwon, Sam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.502-502
    • /
    • 2007
  • A catenary system should be designed to have an uniform elasticity over a span in order to maintain the lowest possible loss of contact between a pantograph and a contact wire. A elasticity uniformity of a catenary can be regarded as a important design factor used for predicting the current collection performance for a catenary. There are a couple of formulas to calculate the degree of elasticity uniformity of a catenary according to the literature survey. The effectiveness of these formulas is reviewed by performing catenary elasticity and loss of contact analysis for various different configurations of catenary systems using a beam element based FEM program. The results reveals that these formulas are not suitable to predict the current collection performance for a catenary. Therefore, a new formula based on the standard deviation of the elasticity over a span is proposed in this study. The analysis results show that the new formula for an elasticity uniformity of a catenary is very effective in predicting the current collection performance for a catenary.

  • PDF

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.