• Title/Summary/Keyword: FEM 응력해석

Search Result 549, Processing Time 0.029 seconds

Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • Choi Byung Ki;Jang Kyeung Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

Design Safety Analysis of $9\%$ Nickel Steel Structure in Inner Tank Storage System (내부탱크 저장 시스템에서 $9\%$ 니켈강재 구조물의 설계 안전성에 관한 연구)

  • Kim Chung Kyun;Choi Dong Yul
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.49-55
    • /
    • 2001
  • This paper presents the design safety analysis of the inner tank structure, which is manufactured by 9 percent nickel steel sheets in the full containment type LNG storage tank. The FEM computed results indicate that top girder and several stiffener rings of the inner tank play an important role for controlling the deformation and stress intensity of the inner tank structure. The hydrostatic pressure due to cryogenic fluids gave more influential to the deformation of the inner tank wall compared with that of a cryogenic temperature of $-162^{\circ}C$. But, the deformation and stress of the inner tank. which is produced by the buckling loads, are very small because the external load is not applied to the top of the inner tank. This indicates the role of top girder and stiffener rings of the inner tank model is not important in full containment LNG storage tank.

  • PDF

Forging Process Design of Self-Piercing Rivet for Joining dissimilar Sheet Metals (이종재료 접합을 위한 Self-Piercing Rivet의 단조공정설계)

  • Kim, Dong-Bum;Lee, Mun-Yong;Park, Byung-Joon;Park, Jong-Kweon;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.802-807
    • /
    • 2012
  • Self-piercing rivet is sheet joining method. It is being used more to join aluminum alloy sheets. Self-piercing riveting is a large-deformation process that involves piercing. The self-piercing rivet, under the press from the punch, pierces the top sheet and forms a mechanical interlock with the bottom sheet. In this study, forging process was designed for manufacturing self-piercing rivet. The forging process has been simulated by using commercial FEM code DEFORM-2D. In simulation of forging process for manufacturing rivet, process sequence, formability, forging load, and distributions of stress and strain were investigated. The suitable forging process could be designed by comparisons of simulation results. The developed process consists of four stages: upsetting, first chamfering, back extrusion, and second chamfering. The simulated results for forging process were confirmed by experimental trials with the same conditions.

Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder (동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정)

  • 양성철;서영찬;박종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2002
  • The mixed mode problem (I and II) of a peny-shaped interface cracks in remote tension loading on a bi-material cylinder is studied using finite element method. The energy release rates for the tip of the crack in the interface were calibrated for several different moduli combinations and crack ratios using the modified crack closure integral technique and J-integral method, with numerical results obtained from a commercial finite element program. Numerical results show that non-dimensional value of$\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$ increases as the crack size or moduli ratio increases. Meanwhile, non-dimensional value of$\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$ decreases as the moduli ratio increases, but above the moduli ratio of 3 its value decreases then increases again as the crack size increases. Reliability of the numerical analysis in this study was acquired with comparison to an analytical solution for the peny-shaped interface crack in an infinite medium.

A Study on the Optimized Design of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 최적설계에 관한 연구)

  • Cho, Seung-Hyun;Kim, Do-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, the stress and strain characteristics of a helmet shell structure have been analyzed by using the finite element method and Taguchi's design method as functions of the material properties, the thickness of a helmet, the thickness and the number of a bead frame. The optimized design of the helmets for a firefighter and a gas worker is very important for increasing the strength safety and an impact energy absorption capacity of a helmet shell due to an impulsive external force. Thus, the optimized design data of the helmet indicated that the uniform thickness of a helmet shell may be reduced for reducing the total weight of a helmet and increasing the strain energy absorption rate, but the thickness and the number of a bead frame would be increased for increasing the impact strength of the helmet.

  • PDF

Diaphragm Design Method of Steel Box Beam and Circular Column Connections (강재 원형기둥-상자형보 접합부의 다이아프램 설계법)

  • Kim, Young Pil;Hwang, Won Sup;Park, Moon Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 2006
  • This paper investigates the design equations and the strength behavior of the diaphragm for steel box beams and circular-column connections. The strength of the connection is decided by the strength of the diaphragm and the strength of the beam and the column, because the connection diaphragm supports the concentration forces from the box beam's lower flange. In previous researches, however, the calculation procedure of the diaphragm stress from the indeterminate curved-beam model is to complicated to apply in process of the equation. Moreover, no reasonable design has yet ben made because the diaphragm's effect on the strength of the connection has not ben considered. Therefore, through nonlinear FEM analysis of the connection diaphragm, this study examines the strength behavior of a connection with diaphragm details. In addition, a great difference is confirmed between the theoretical and analytic behaviors. Fi naly, considering the strength of the connection and the rigidity capacity of the diaphragm, the diaphragm design method is proposed.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Time-Dependent Warpage Analysis for PCB Considering Viscoelastic Properties of Prepreg (Prepreg의 점탄성 특성을 고려한 PCB의 Time-Dependent Warpage 분석)

  • Chanhee Yang;Chang-Yeon Gu;Min Sang Ju;Junmo Kim;Dong Min Jang;Jae Seok Jang;Jin Woo Jang;Jung Kyu Kim;Taek-Soo Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.23-27
    • /
    • 2024
  • In this study, the time-dependent warpage behavior caused by the viscoelastic properties of prepreg in a printed circuit board (PCB) was analyzed by finite element method (FEM). The accurate viscoelastic properties of the prepreg were measured by stress relaxation test, which were then incorporated into constructed warpage analysis model. When the PCB was subjected to repeated thermal cycles, the warpage of the PCB was restored to its initial state when only the elastic properties of the prepreg were considered, but when the viscoelastic properties were also considered, the warpage was not restored and permanent warpage change occurred. The warpage analysis for three different types of prepreg was conducted to compare their mechanical reliability, and the results showed that materials with elastic properties dominating over viscoelastic properties experienced less warpage, resulting in better mechanical reliability.

The Wavelet Series Analysis for the Fourth-order Elliptic Differential Equation (4계 타원형 미분 방정식을 위한 웨이블릿 급수해석)

  • Jo, Jun-Hyung;Woo, Kwang-Sung;Sin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.355-364
    • /
    • 2011
  • In this study, the details of WSA(wavelet series analysis) have been demonstrated to solve the 4th-order elliptic differential equation. It is clear to solve the 2nd-order elliptic differential equation with the basis function of Hat wavelet series that is used in the previous study existed in $H^1$-space. However, it is difficult to solve the 4th order differential equation with same basis function of Hat wavelet series because of insufficient differentiability and integrability. To overcome this problem, the linear equations in terms of moment and deflection have been formulated and solved sequentially that are similar to extension of Elastic Load Method and Moment Area Method in some senses. Also, the differences and common points between the proposed method and the meshless method are discussed in the procedure of WSA formulation. As we expect, it is easy to ascertain that the more terms of Hat wavelet series are used, the better numerical solutions are improved. Also the solutions obtained by WSA have been compared with the conventional FEM solutions in case of Euler beam problems with stress singularity.

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.