• Title/Summary/Keyword: FEAD(Front End Accessory Drive)

Search Result 2, Processing Time 0.015 seconds

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.

Analysis of Cylinder Compression Pressure Uniformity and Valve Timing by Start Motor Current and Cylinder Pressure during Cranking (기동 모터의 전류 파형과 실린더 압력 분석을 통한 기관의 압축 압력 균일도 및 밸브 개폐 시점 이상 여부 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Therefore, uniformity of compression pressure and valve timing became one of most important engine design and production standard. Conventional method to evaluate compression pressure uniformity is to measure each cylinder pressure by mechanical pressure gage during cranking. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and also causes high manhour and cost. To check valve timing, related FEAD parts should be disassembled and timing mark should be checked manually. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. With this new methodology, possibility to detect leaky cylinder and wrong valve timing was observed.