• 제목/요약/키워드: FEA Simulation

검색결과 220건 처리시간 0.028초

유한요소해석을 이용한 인라인스케이트 프레임의 사출성형해석 및 구조해석에 관한 연구 (Injection Molding and Structure Analysis of Inline Skate Frames Using FEA)

  • 박철우
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1507-1514
    • /
    • 2011
  • 플라스틱 재료를 사용한 가공법 중에서 가장 보편적인 가공법이 사출성형이다. 오늘날에는 플라스틱 재료의 활용도는 지속적으로 증가하고 있으며, 신소재 등의 개발로 그 적용범위 또한 확대되고 있다. 인라인 스케이트는 4 가지 구성품으로 이루어진다. 그 4 가지 구성품은 부츠, 프레임, 휠, 브레이크로써 프레임이 가장 중요한 부품이다. 사출 재질에 변화에 따른 사출 성형성을 알아보았다. 런너와 게이트의 치수 변화에 따른 제품의 사출 성형성을 알아보았다. 본 연구에서는 Moldflow를 이용해서 사출성형 해석을 수행하였다. ANSYS를 이용해서 구조해석을 수행하였다.

웹 기반 자동차용 스틸 풀리 설계 지원 시스템 (Web-based Design Support System for Automotive Steel Pulley)

  • 김형중;이경태;천두만;안성훈;장재덕
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.39-47
    • /
    • 2008
  • In this research, a web-based design support system is constructed for the design process of automotive steel pulley to gather engineering knowledge from pulley design data. In the design search module, a clustering tool for design data is proposed using K-means clustering algorithm. To obtain correlational patterns between design and FEA (Finite Element Analysis) data, a Multi-layer Back Propagation Network (MBPN) is applied. With the analyzed patterns from a number of simulation data, an estimation of minimum von mises can be provided for given design parameters of pulleys. The case study revealed fast estimation of minimum stress in the pulley within 12% error.

Analysis of losses within SMES system for compensating output fluctuation of wind power farm

  • Park, S.I.;Kim, J.H.;Le, T.D.;Lee, D.H.;Kim, D.J.;Yoon, Y.S.;Yoon, K.Y.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.57-61
    • /
    • 2014
  • Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

사각 고정자 철심을 가지는 삼상 유도전동기의 고정자 철심 절단 각에 따른 전류 특성 연구 (The Study on Current Characteristic according to Core Cutting Degree in Three-Phase Induction Motor with Rectangular Stator Core)

  • 임종빈;김승주;김광수;이형우;김솔;이주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.1649-1654
    • /
    • 2009
  • Induction motors widely use in industry because structure is simple and hard and cost is generally cheap and they are easy to control. In recently, because of saving steel, ventilation and benefit of frame fixing, rectangular core type induction motors use in industry more and more. This paper presents current characteristic according to stator core cutting degree in three-phase induction motor (IM) with rectangular stator core. According to stator cutting degree, magnetic saturation and paths of flux are changed. Because of these situations, phase currents are unbalance and are produced harmonic components and they cause decrease of efficiency. We analyze each $10^{\circ}$ from $0^{\circ}$ to $30^{\circ}$ using 2-D finite element analysis (FEA). Optimal stator cutting core degree selection supplies stable currents and efficiency improvement. In this paper, loss separation test was executed by IEEE Std. 112-98 Method B and we compare with the result of loss separation by Simulation using FEM and by Experiment.

  • PDF

유한요소 해석을 이용한 나노임프린트 가압 공정에서 발생하는 결함 원인에 대한 연구 (A Study on Cause of Defects in NIL Molding Process using FEM)

  • 송남호;손지원;김동언;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.364-367
    • /
    • 2007
  • In nano-imprint lithography (NIL) process, which has shown to be a good method to fabricate polymeric patterns, several kinds of pattern defects due to thermal effects during polymer flow and mold release operation have been reported. A typical defect in NIL process with high aspect ratio and low resist thickness pattern is a resist fracture during the mold release operation. It seems due to interfacial adhesion between polymer and mold. However, in the present investigation, FEM simulation of NIL molding process was carried out to predict the defects of the polymer pattern and to optimize the process by FEA. The embossing operation in NIL process was investigated in detail by FEM. From the analytical results, it was found that the lateral flow of polymer resin and the applied pressure in the embossing operation induce the weld line and the drastic lateral strain at the edge of pattern. It was also shown that the low polymer-thickness result in the delamination of polymer from the substrate. It seems that the above phenomena cause the defects of the final polymer pattern. To reduce the defect, it is important to check the initial resin thickness.

  • PDF

피로누적손상을 이용한 직조 CFRP의 피로수명 예측 (Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model)

  • 장재욱;조제형;오동진;김명현
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

바이 모달 트램의 전기 제어 장치용 냉각장치에 관한 연구 (A Study on the Electronically Controlled Cooling system for Bimodal Tram)

  • 김창욱;김혜수;송정일
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.91-98
    • /
    • 2014
  • In this study, the first and second electronically controlled cooling systems for a bimodal tram were developed. The performance characteristics of the cooling systems were assessed experimentally with actual and identical conditions, and a simulation was run using ANSYS Fluent. The results of the experimental and FEA method were standardized. In order to confirm the reliability of the experimental method, the experiment was carried out by a testing institution. The low-volume flow-rate condition was found to be better, but the cooling system performed in a minimal condition. Therefore, it is important to find the optimum performance levels. The cooling system equipment was revised to determine the optimized design parameters, after which the cooling performance levels increased at the radiation area. Specifically, with a greater fan diameter. Through this study, the newly developed cooling system will be reevaluated after being mounted on an actual bimodal tram. This will lead to a completely domestically produced bi-modal tram cooling system.

축방향 자기장에 의한 대전류 아크 특성에 관한 연구 (A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field)

  • 조성훈;이종철;최명준;권중록;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

압전형 에너지 수확장치를 위한 통합 해석환경의 적용 및 검증 (Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester)

  • ;;한승오
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.364-368
    • /
    • 2013
  • Vibrational energy harvester based on piezoelectricity has been expected to be the dominant energy harvesting technology due to the advantages of high conversion efficiency, light weight and small size, night operation, etc. Its commercialization is just around the corner but the integration with power management electronics should be solved in advance. In this paper, therefore, fully-integrated design environment for piezoelectric energy harvesting systems is presented to assist co-design with the power management electronics. The proposed design environment is capable of analyzing the energy harvester including the package-induced damping effects and simulating the device and its power management electronics simultaneously. When the developed design environment was applied to the fabricated device, the simulated resonant frequency matched well with the experimental result with a difference of 2.97% only. Also, the complex transient response was completed in short simulation time of 3,001 seconds including the displacement distribution over the device geometry. Furthermore, a full-bridge power management circuit was modeled and simulated with the energy harvester simultaneously. Therefore the proposed, fully-integrated design environment is accurate and fast enough for the contribution on successful commercialization of piezoelectric energy harvester.