• Title/Summary/Keyword: FE-TEM

Search Result 471, Processing Time 0.027 seconds

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process

  • Kim, Hyun-Ju;Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.249-252
    • /
    • 2012
  • Fe doped $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and $TiO_2$ sol. Fe doped $TiO_2$ particles were reacted in the temperature range of 170 to $200^{\circ}C$ for 6 h. The microstructure and phase of the synthesized Fe doped $TiO_2$ nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped $TiO_2$ nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped $TiO_2$ nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped $TiO_2$ nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped $TiO_2$ nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped $TiO_2$ nanoparticles was about 16% up to ${\sim}700^{\circ}C$; water of crystallization was dehydrated at $271^{\circ}C$. The transition of Fe doped $TiO_2$ nanoparticle phase from anatase to rutile occurred at almost $561^{\circ}C$. The amount of rutile phase of the synthesized Fe doped $TiO_2$ nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.

Processing and Properties of Mechanically Alloyed Iron-Silicide (기계적 합금화에 의한 Iron-Silicide의 제조 및 특성)

  • Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.132-136
    • /
    • 2001
  • Iron- silicide has been produced by mechanical alloying process and consolidated by hot pressing. As-consolidated iron silicides were consisted of $\beta$-FeSi$_2$ phase, and untransformed mixture of $\alpha$-$Fe_2Si_5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting $\beta$-$FeSi_2$ phase. The condition for $\beta$-FeSi$_2$ transformation was investigated by utilizing DTA, SEM, TEM and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at $830^{\circ}C$ for 24 hours. The mechanical and thermoelectric properties of $\beta$-FeSi$_2$ materials before and after isothermal annealing were characterized in this study.

  • PDF

The Effect of Composition and Current Condition on Magnetic Properties of Co-Fe-Ni Soft Magnetic Alloy (합금 조성과 전류조건이 CoFeNi 3원계 합금의 자기특성에 미치는 영향)

  • Jeung, Won-Young;Kim, Hyun-Kyung;Lee, Jeong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.241-245
    • /
    • 2005
  • CoFeNi alloys are some of the most studied soft magnetic materials because of their applications as write-head core materials in HDD and MEMS. Ternary CoFeNi films with high saturation magnetic flux density, Bs and low coercivity, He were successfully grown by electrodeposition. The optimal composition was $Co_{30}\;Fe_{34}\;Ni_{36}(at\%)$, and Bs and Hc were 1.9 T and 0.16 A/m, respectively. The XRD and TEM results show that the low Hc of the CoFeNi films was due to very fine crystal particles and mixed fcc and bcc phases.

Dielectric Properties and Ordering Structures of Pb(Fe1/2Ta1/2)O3-Pb(Fe1/2Nb1/2)O3 Solid Solutions (Pb(Fe1/2Ta1/2)O3-Pb(Fe1/2Nb1/2)O3 고용체의 유전특성 및 질서배열구조)

  • Woo, Byong-Chul;Kim, Byung-Kook;Lee, Jong-Ho;Park, Hyun-Min;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.863-870
    • /
    • 2002
  • The Single phase $Pb(Fe_{1/2}Ta_{1/2})O_3$ (x=0.0∼1.0) solid solutions were successfully synthesized and their ordering structures as well as dielectric properties were investigated ${{r(Nb^{5+})=r(Ta^{5+})=0.78 {\AA},\;AW(Nb^{5+})=92.91,\;AW(Ta^{5+})=180.95}}$. While $Pb(Fe_{1/2}Ta_{1/2})O_3$ showed typical relaxor ferroelectric characteristics such as dielectric relaxation and diffuse phase transition, the sharpeness of the phase transition increased as $Ta^{5+}$ was replaced by $Nb^{5+}$ and finally $Pb(Fe_{1/2}Nb_{1/2})O_3$ showed normal ferroelectric characteristics with no dielectric relaxation. By using Raman spectroscopy, it was revealed that the $Fe^{3+}\;and\;Ta^{5+}\;of\;Pb(Fe_{1/2}Ta_{1/2})O_3$ were stoichiometrically 1:1 ordered within the short range which can be hardly probed even by TEM. Also, The degree of ordering in $Pb(Fe_{1/2}Ta_{1/2})O_3$ decreased as $Ta^{5+}$ was replaced by $Nb^{5+}$ and finally $Fe^{3+}\;and\;Nb^{5+}\;of\;Pb(Fe_{1/2}Nb_{1/2})O_3$ were completely disordered. The relaxor ferroelectric characteristics of $Pb(Fe_{1/2}Ta_{1/2})O_3$ could be correlated with the stoichiometric 1:1 ordering of B-site cations within the short range which can be hardly probed even by TEM. Also, the decrease of the relaxor ferroelectric characteristics with the replacement of $Ta^{5+}\;by\;Nb^{5+}$ could be correlated with the weakening of the ordering and the normal ferroelectric characteristics of $Pb(Fe_{1/2}Nb_{1/2})O_3$ could be correlated with the complete disordering of B-site cations.

Preparation of Different Fe Containing TiO2 Photocatalysts and Comparison of Their Photocatalytic Activity

  • Meng, Ze-Da;Zhang, Kan;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.228-234
    • /
    • 2010
  • In this paper, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composite photocatalysts were prepared with titanium (IV) n-butoxide (TNB) by a sol-gel method. $TiO_2$, Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ were characterized by scanning electron microscopy (SEM), Transmission electron microscope (TEM), specific surface area (BET), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution. XRD patterns of the composites showed that the photocatalyst composite contained a typical single and clear anatase phase. The surface properties shown by SEM presented a characterization of the texture on Fe-fullerene/$TiO_2$ composites and showed a homogenous composition in the particles for the titanium sources used. The EDX spectra for the elemental identification showed the presence of O, C and Ti elements. Moreover, peaks of the Fe element were observed in the Fe-$TiO_2$ and Fe-fullerene/$TiO_2$ composites. The degradation of MB solution by UV-light irradiation in the presence of photocatalyst compounds was investigated in complete darkness. The degradation of MB concentration in aqueous solution occurred via three kinds of physical phenomena: quantum efficiency of the fullerene; organo-metallic reaction of the Fe compound; and decomposition of $TiO_2$. The degradation rate of the methylene blue solution increased when using Fe-fullerene/$TiO_2$ compounds.

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

Effect of Nano Grain Growth on Coefficient of Thermal Expansion in Electroplated Fe-Ni Invar Alloy (Fe-Ni Invar 합금에서 나노 결정립 성장이 열팽창계수에 미치는 영향)

  • Yim, Tai Hong;Choe, Byung Hak;Jeong, Hyo Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.515-519
    • /
    • 2014
  • The aim of this paper is to consider the effect of annealing on the coefficient of thermal expansion (CTE) of electroplated Invar Fe-Ni alloy. The CTE of the as-electroplated alloy is lower than those of alloys annealed at $400^{\circ}C$ and $800^{\circ}C$. XRD peaks become sharper as the as-electroplated alloy is annealed, which means the grain growth. The average grain sizes of as-electroplated and as-annealed alloys at $400^{\circ}C$ and $800^{\circ}C$ are 10 nm, 70 nm, and $2{\mu}m$, respectively, as determined by TEM and EBSD analyses. The CTE variation for the various grain sizes after annealing may come from the magnetostriction effect, which generates strain due to changes in the magnetization state of the alloys. The thermal expansion coefficient is considered to be affected by nano grain size in electroplated Fe-Ni Invar alloys. As grain size decreases, ferromagnetic forces might change to paramagnetic forces. The effect of lattice vibration damping of nano grain boundaries could lead to the decrease of CTE.

Defects analysis of RE : YAG (RE = Nd3+, Er3+) single crystal synthesized by Czochralski method (Czochralski법으로 성장된 RE : YAG(RE = Nd3+, Er3+) 단결정의 결함분석)

  • Park, Cheong Ho;Joo, Young Jun;Kim, Hye Young;Shim, Jang Bo;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • RE : YAG ($RE=Nd^{3+}$, $Er^{3+}$) single crystals are laser diodes and generally grown by Czochralski method with controlling the various growth parameter. Since the defects occurred by temperature gradient or the rotation speed of solid-liquid growth interface act as the decline of crystal optical property during the growth procedure, crystalline quality improvement via defects analysis is necessary. The etch pit density (EPD) analysis was used to confirm the surface defect of grown RE : YAG single crystal and to select the area of transmission electron microscopy (TEM) analysis. Defects in the specimen produced by tripod polishing method such as buckling, rod shaped, bend contours by internal stress, segregation and others were observed by using 200 kV TEM and 300 kV FE-TEM.

Degradation of Soft Magnetic Properties of Fe-Hf-N Films After Annealing (Fe-Hf-N 박막의 열처리 후 연차기특성 열화)

  • 제해준;박재환;김영환;김병국
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.182-187
    • /
    • 2001
  • The purpose of this study is to investigate the degradation of soft magnetic properties of Fe-Hf-N thin films after annealing in vacuum. They were annealed at 450℃∼650℃. The microstructure and crystal phase of the selected area of the thin films were analyzed by TEM and SAD. After annealing at 450℃-600℃, the coercivity of the films increased by 0.2 Oe and the effective permeability decreased by 1500 as compared with them before annealing due to the growth of α-Fe crystallites. The saturation magnetic flux density of the films increased by 0.5 KG after annealing under 600℃. However, the soft magnetic properties of the film annealed at 650℃ degraded abruptly, which was attributed to the destruction of nano-crystalline microstructure of the film due to the rapid growth of α-Fe crystallites with the segregation of N sited in the α-Fe lattice into HfN.

  • PDF