• Title/Summary/Keyword: FE modal analysis

Search Result 145, Processing Time 0.026 seconds

Finite element model updating - Case study of a rail damper

  • Kuchak, Alireza Jahan Tigh;Marinkovic, Dragan;Zehn, Manfred
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • In rail industry, noise reduction is a concern to decrease environmental pollution. The current study focuses on rail damper modeling and improvement of the model through validation with experimental results. Accurate modeling and simulation of rail dampers, specifically tuned rail dampers with layers interconnected by bolt joints, shall enable objective-oriented improvement of their design. In this work, to improve the damper model cone pressure theory is applied in the FE model and the sensitivity analysis is then applied to gradually improve the FE model. The improved model yields higher Modal Assurance Criterion (MAC) values and lower frequencies deviation.

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

Effect of Thickness Change in Corrugations on the Stiffness and Vibration Characteristics of a Thermoformed Diaphragm (열성형 진동판의 미세주름 두께변화가 구조강성 및 진동특성에 미치는 영향 분석)

  • Kim, K.M.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Recently, micro-speakers have attracted much attention due to their increasing demand in mobile devices. Micro-speakers use polymer diaphragms, which are manufactured from thin polymer film by the thermoforming process. The diaphragm is generally designed to be a circular membrane with a cross section consisting of a double dome structure, and a number of corrugations are located in the outer region to produce better sound quality. In the current study, a finite element (FE) analysis is performed for thermoforming, and the resulting thickness reduction in the corrugation regions is estimated. The estimated thickness distribution is used in further structural and modal FE analyses, from which the effects of local thickness reduction on the stiffness and vibration characteristics are determined.

Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology (승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구)

  • Song, Min-Keun;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.125-130
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element(FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequency of the capsule in the x and z direction is 8.5Hz and 8.75Hz in air, and 7.5Hz and 7.75Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0m/s$^2$ that is within the allowable vibrational limit(18.99m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233N.

  • PDF

Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test (핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성)

  • 강영환;김봉구;류정수;김영진;최명환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.741-748
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element (FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequencies of the capsule in the x and z direction are 8.5 Hz and 8.75 Hz in air, and 7.5 Hz and 7.75 Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0 m/s$^2$ that is within the allowable vibrational limit(18.99 m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13 mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233 N.

Analysis of dynamic characteristic applying frame on stamped base in 2.5 inch hard disk drive (프레임이 적용된 스탬프 베이스의 동특성 분석)

  • Lim, Geonyup;Park, No-Cheol;Park, Kyoung-Su;Kim, Seokhwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • HDD has been easily exposed to the external shock and vibration because HDD has to apply to mobile devices. Therefore, the stiffness of base has been the important factors for the design of HDD. To improve the stiffness of base, the frame was applied to the base. First, the finite element model of the base was constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirming the shock simulation model. The dynamic characteristic of original base which is verified is compared with the base which is applied the frame through modal analysis and shock analysis.

FE Model Improvement Using Experimental Data Under the Criterion of Eigen-Property Error Minimization (고유치 오차 최소화 기준에 따른 실험데이터에 의한 유한요소 모델 개선)

  • 지영춘;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.363-373
    • /
    • 1995
  • In this study, a FE model tuning method using experimental modal data was suggested after examining all the published conventional methods. The idea of this method is introducing scale factors to maintain both the structural connectivity and the consistency in the corrected stiffness matrix which makes it always possible to interpret the stiffness elements with the corresponding physical configuration of the targeting structure. The scale factors are determined to minimize the objective function of eigen-properties. The proposed method was tested to determine the joint stiffness of a T shaped beam. The test results were also compared with the tuned stiffness obtained from a probed commercial package (SYSTUNE) and found that this method is very accurate and compatible.

Forced Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법을 이용한 평판 구조물의 강제진동해석)

  • 최명수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2003
  • The finite element method(FEM) is the most widely used and powerful method for structural analysis. In general, in order to analyze complex and large structures, we have used the FEM. However, it is necessary to use a large amount of computer memory and computation time for solving accurately by the FEM the dynamic problem of a system with many degree-of-freedom, because the FEM has to deal with very large matrices in this case. Therefore, it was very difficult to analyze the vibration for plate structures with a large number of degrees of freedom by the FEM on a personal computer. For overcoming this disadvantage of the FEM without the loss of the accuracy, the finite element-transfer stiffness coefficient method(FE-TSCM) was developed. The concept of the FE-TSCM is based on the combination of modeling technique in the FEM and the transfer technique in the transfer stiffness coefficient method(TSCM). The merit of the FE-TSCM is to take the advantages of both methods, that is, the convenience of the modeling in the FEM and the computation efficiency of the TSCM. In this paper, the forced vibration analysis algorithm of plate structures is formulated by the FE-TSCM. In order to illustrate the accuracy and the efficiency of the FE-TSCM, results of frequency response analysis for a rectangular plate, which was adopted as a computational model, were compared with those by the modal analysis method and the direct analysis method which are based on the FEM.