• 제목/요약/키워드: FE analysis method

검색결과 1,530건 처리시간 0.06초

상장모델과 유한요소법의 연계해석을 통한 변태소성 전산모사 (Numerical Calculation of Transformation Plasticity Using a FE Analysis Coupled with n Phase Field Model)

  • 조이길;김진유;차필령;이재곤;한흥남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2009
  • Transformation plasticity is that when a phase transformation of ferrous or non-ferrous alloys progresses even under an extremely small applied stress compared with a yield stress of the material, a permanent deformation occurs. One of widely accepted description for the transformation was proposed by Greenwood and Johnson [1]. Their description is based on an assumption that a weaker phase of an ideal plastic material could deform plastically to accommodate the externally applied stress and the internal stress caused by the volumetric change accompanying the phase transformation. In this study, an implicit finite element model was developed to simulate the deformation behavior of a low carbon steel during phase transformation. The finite element model was coupled with a phase field model, which could simulate the kinetics for ferrite to austenite transformation of the steel. The thermo-elasto-plastic constitutive equation for each phase was adopted to confirm the weaker phase yielding, which was proposed by Greenwood and Johnson [1]. From the simulation, the origin of the transformation plasticity was quantitatively discussed comparing with the other descriptions of it.

  • PDF

유한요소법과 최적설계기법을 활용한 히트싱크 콜드 플레이트 최적 설계 (Optimized Design of a Cold Plate Heat Sink using FEM and Optimization)

  • 홍석무;서형준;김종문;심재원;황지훈
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.419-424
    • /
    • 2014
  • In order to improve efficiency, an outdoor unit using a refrigerant cooling method is designed into many air conditioner systems. The heat exchanger is composed of a Cu tube and an plate. The optimal design for the cold plate is very important because the efficiency of the heat transfer depends on the contact area between the Cu tube and the cold plate. The current study focused on the design of the cold plate to obtain a uniform contact between the Cu tube and the cold plate. Both FE(finite element) analysis and optimization were used in the design. The contact area between the tube and plate was predicted and improved by 16% through the press forming simulations. The springback after press forming was also reduced when the optimized design parameters were used. To verify the validity of the optimal cold plate design, a verification test was conducted. As a result, the performance of the heat exchanger improved by 34% when compared to benchmarked products.

직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석 (Elastic-Plastic Fracture Mechanics Analyses for Circumferential Part-Through Surface Cracks at the Interface Between Elbows and Pipes)

  • 송태광;오창균;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.710-717
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions fur straight pipes.

Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Park, Dong-Won;Kim, Sun-Il;Lee, Jae-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.172-176
    • /
    • 2009
  • The nature and morphology of titanium dioxide films play a significant role in determining the overall efficiency of dye-sensitized solar cell (DSSCs). In this work, the preparation of nanostructured titania particles by sol-gel method (SG-$TiO_2$) and its characterization were investigated for the application of DSSCs. The samples were characterized by XRD, XPS, FE-SEM, BET and FT-IR analysis. The energy conversion efficiency of SG-$TiO_2$ was approximately 8.3 % under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight. DSSCs made of SG-$TiO_2$ nanocrystalline films as photoanodes achieved better energy conversion efficiency compared to those prepared using commercially available Degussa P25.

풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part II : Two-Shell 기하형상 (Evaluation of Structural Performance of Natural Draught Cooling Tower According to Shell Geometry Using Wind Damage Analysis - Part II : Two-Shell Geometry)

  • 이상윤;노삼영
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.49-58
    • /
    • 2017
  • The result of the previous work leads to the idea that the inner area of the hyperbolic shell generator should be minimized for the cooling tower with higher first natural frequency. In this study the inner area of the hyperbolic shell generator was graphically established under varying height of the throat and angle of the base lintel. From the graph, several shell geometries were selected and analysed in the aspect of the natural frequency. Three representative towers reinforced differently due to different first natural frequencies were analysed non-linearly and evaluated using a damage indicator based on the change of natural frequencies. The results demonstrated that the damage behaviour of the tower reinforced higher due to a lower first natural frequency was not necessarily advantageous than the others.

System identification of highway bridges from ambient vibration using subspace stochastic realization theories

  • Ali, Md. Rajab;Okabayashi, Takatoshi
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.189-206
    • /
    • 2011
  • In this study, the subspace stochastic realization theories (SSR model I and SSR model II) have been applied to a real bridge for estimating its dynamic characteristics (natural frequencies, damping constants, and vibration modes) under ambient vibration. A numerical simulation is carried out for an arch-type steel truss bridge using a white noise excitation. The estimates obtained from this simulation are compared with those obtained from the Finite Element (FE) analysis, demonstrating good agreement and clarifying the excellent performance of this method in estimating the structural dynamic characteristics. Subsequently, these methods are applied to the vibration induced by both strong and weak winds as obtained by remote monitoring of the Kabashima bridge (an arch-type steel truss bridge of length 136 m, and situated in Nagasaki city). The results obtained with this experimental data reveal that more accurate estimates are obtained when strong wind vibration data is used. In contrast, the vibration data obtained from weak wind provides accurate estimates at lower frequencies, and inaccurate accuracy for higher modes of vibration that do not get excited by the wind of lower intensity. On the basis of the identified results obtained using both simulated data and monitored data from a real bridge, it is determined that the SSR model II realizes more accurate results than the SSR model I. In general, the approach investigated in this study is found to provide acceptable estimates of the dynamic characteristics of highway bridges as well as for the vibration monitoring of bridges.

Ultra-fine Grained Aluminum Alloy Sheets fabricated by Roll Bonding Process

  • 김형욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity.

  • PDF

Formation of Magnetic Graphene Nanosheets for Rapid Enrichment and Separation of Methyl Orange from Water

  • Zhang, Feng-Jun;Zhang, Zhuo;Xie, Fa-Zhi;Xuan, Han;Xia, Hong-Chen;Zhu, Lei;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.570-574
    • /
    • 2014
  • Magnetic-graphene nanosheets have been synthesized via a simple effective chemical precipitation method followed by heat treatment. The composite nanosheets are super paramagnetic at room temperature and can be separated by an external magnetic field. The prepared magnetic-graphene nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and BET surface area analysis. The results demonstrated the successful attachment of iron oxide nanoparticles to graphene nanosheets. It was found that the attached nanoparticles were mainly $Fe_3O_4$. The magnetic-graphene nanosheets showed near complete methyl orange removal within 10 mintues and would be practically usable for methyl orange separation from water.

Simplified planar model for damage estimation of interlocked caisson system

  • Huynh, Thanh-Canh;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.441-463
    • /
    • 2013
  • In this paper, a simplified planar model is developed for damage estimation of interlocked caisson systems. Firstly, a conceptual dynamic model of the interlocked caisson system is designed on the basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot model allowing only the sway motion is formulated. To represent the condition of interlocking mechanisms, each caisson unit is connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model's vibration analysis is numerically evaluated on a 3-D FE model of the interlocked caisson system. Finally, the simplified planar model is employed for damage estimation in the interlocked caisson system. For localizing damaged caissons, a damage detection method based on modal strain energy is formulated for the caisson system.

실리콘 산화막에 대한 Ta-Mo 금속 게이트의 열적 안정성 (Thermal Stability of Ta-Mo Alloy Metal on Silicon Oxide)

  • 노영진;이충근;김재영;홍신남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.3-6
    • /
    • 2003
  • This paper describes the interface stability of Ta-Mo alloy metal on $SiO_2$ Alloy was formed by co-sputtering method, and the alloy composition was varied by controlling Ta and Mo sputtering power. When the atomic composition of Ta was about 91%, the measured work function was 4.2eV that is suitable for NMOS gate. To identify interface stability between Ta-Mo alloy metal and $SiO_2$, C-V, FE-SEM(Field Emission-SEM), and XRD(X-ray diffraction) were performed on the samples annealed with rapid thermal processor between $600^{\circ}C$ and $900^{\circ}C$. Even after $900^{\circ}C$ rapid thermal annealing, excellent interface stability and electrical properties were observed. Also, thermodynamic analysis was studied to compare with experimental results.

  • PDF