• Title/Summary/Keyword: FCM 알고리즘

Search Result 176, Processing Time 0.035 seconds

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

Nonlinear Inference Using Fuzzy Cluster (퍼지 클러스터를 이용한 비선형 추론)

  • Park, Keon-Jung;Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2016
  • In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.313-319
    • /
    • 2007
  • In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.

  • PDF

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION (Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Hang, Goo-Seun;Ahn, Sang-Ho;Kang, Byoung-Doo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Detecting a moving object from videos and tracking it are basic and necessary preprocessing steps in many video systems like object recognition, context aware, and intelligent visual surveillance. In this paper, we propose a method that is able to detect a moving object quickly and accurately in a condition that background and light change in a real time. Furthermore, our system detects strongly an object in a condition that the target object is covered with other objects. For effective detection, effective Eigen-space and FCM are combined and employed, and a CONDENSATION algorithm is used to trace a detected object strongly. First, training data collected from a background image are linear-transformed using Principal Component Analysis (PCA). Second, an Eigen-background is organized from selected principal components having excellent discrimination ability on an object and a background. Next, an object is detected with FCM that uses a convolution result of the Eigen-vector of previous steps and the input image. Finally, an object is tracked by using coordinates of an detected object as an input value of condensation algorithm. Images including various moving objects in a same time are collected and used as training data to realize our system that is able to be adapted to change of light and background in a fixed camera. The result of test shows that the proposed method detects an object strongly in a condition having a change of light and a background, and partial movement of an object.

The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization (퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.970-976
    • /
    • 2007
  • In this study, Polynomial Network Pattern Classifier(PNC) based on Fuzzy Inference Mechanism is designed and its parameters such as learning rate, momentum coefficient and fuzzification coefficient are optimized by means of Particle Swarm Optimization. The proposed PNC employes a partition function created by Fuzzy C-means(FCM) clustering as an activation function in hidden layer and polynomials weights between hidden layer and output layer. Using polynomials weights can help to improve the characteristic of the linear classification of basic neural networks classifier. In the viewpoint of linguistic analysis, the proposed classifier is expressed as a collection of "If-then" fuzzy rules. Namely, architecture of networks is constructed by three functional modules that are condition part, conclusion part and inference part. The condition part relates to the partition function of input space using FCM clustering. In the conclusion part, a polynomial function caries out the presentation of a partitioned local space. Lastly, the output of networks is gotten by fuzzy inference in the inference part. The proposed PNC generates a nonlinear discernment function in the output space and has the better performance of pattern classification as a classifier, because of the characteristic of polynomial based fuzzy inference of PNC.

Optimization Method of Differential Evolution-based Radial Basis Function Neural Networks (차분 진화 알고리즘 기반 방사형 기저 함수 신경회로망 분류기의 최적화 방법)

  • Ma, Chang-Min;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1962-1963
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 최적화된 방사형 기저 함수 신경회로망(Radial Basis Function Neural Networks) 분류기를 제안한다. RBFNN은 입력층, 은닉층, 출력층의 3층 구조로 되어 있으며 Multi Dimension, Predictive ability, Robustness한 특징이 있다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 Fuzzy C-means 클러스터링 알고리즘을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. RBFNN은 은닉층의 노드수와 FCM 클러스터링의 퍼지화 계수, 연결가중치의 다항식 타입이 모델의 성능의 향상에 영향을 미치기 때문에 최적화가 필요하며 본 논문에서는 Differential Evolution(DE) 알고리즘을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 제안된 모델을 평가하기 위해 패턴분류에 많이 사용되는 Iris 데이터와 Wine 데이터를 이용하였다.

  • PDF

Fault Diagnosis of Induction Motor Using Clustering and Principal Component Analysis (클러스터링과 주성분 분석기법을 이용한 유도전동기 고장진단)

  • Park Chan-Won;Lee Dae-Jong;Park Sung-Moo;Chun Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.208-211
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 고장신호를 얻기 위하여 구축하였으며, 취득된 데이터를 이용하여 진단 알고리즘을 구축하였다. 취득된 데이터 중에서 진단을 위해 사용될 훈련데이터는 퍼지 기반 클러스터링 기법을 이용하여 신뢰성 높은 데이터를 선택하여 고장별 신호를 추출하였다. 진단 알고리즘으로는 데이터를 주성분 분석기법을 적용하였으며, 최종 분류를 위해 Euclidean 기반 거리척도 기법을 이용하였다. 다양한 부하 및 고장신호에 대하여 제안된 방법을 적용하여 타당성을 검증하였다.

  • PDF

Computational Vision and Fuzzy Systems Laboratory (무기본형 기초의 퍼지 클러스터링에 대한 빠른 접근)

  • Hwang, Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.1-4
    • /
    • 2000
  • 본 논문에서는 패턴 데이터(pattern data) 의 분할(partitioning)위하여, 계산량의 단축할 수 있는 효과적인 퍼지 클러스터링 알고리즘(fuzzy clustering algorithm)을 제시한다. 본 논문에 제시된 알고리즘은 두 단계로 수행된다. 첫번째 단계는, 개선된 FCM(Fuzzy C-means)방법에 의해 입력 패턴틀에 대해, 단지 두 번의 반복 수행과정만을 거쳐, 충분히 많은 개수의 초기 클러스터 중 심(center)를 결정한다. 다음 단계에서는, 본 논문에 제시될 클러스터 합치기 알고리즘(cluster merging algorithm)을 통해 각 클러스터의 부피(volume)에 따라 클러스터들을 합치는 과정(merging process)을 하게 된다. 결과적으로 일정한 제한된 개수의 무정형(amorphous)의 클러스터틀의 효과적으로 표현될 수 있다. 본 논문의 마지막에 제시될 실험 결과들은 제시된 방법의 유용성을 보여줄 것이다.

  • PDF

PCA 알고리즘과 개선된 퍼지 신경망을 이용한 여권 인식 및 얼굴 인증

  • Jung Byung-Hee;Park Choong-Shik;Kim Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.336-343
    • /
    • 2006
  • 본 논문에서는 여권 영 상에서 PCA 알고리즘을 이용한 얼굴 인증과 개선된 퍼지 신경망을 이용한 여권 코드 인식 방법을 제안한다. 본 논문에서는 여권영상에 대해 소벨 연산자를 이용하여 에지를 추출하고 에지가 추출된 영상을 수평 스미어링하여 여권코드 영역을 추출한다. 추출된 여권 코드 영역의 기울기를 검사하여 기울기 보정을 하고, 여권 코드 영역을 이진화 한다. 이진화된 여권 코드 영역에 대하여 8방향윤곽선 추적 알고리즘을 적용하여 여권 코드를 추출한다. 추출된 여권 코드는 퍼지 신경망을 개선하여 여권 코드 인식에 적용한다. 개선된 퍼지 신경 망은 입력층과 중간층 사이의 학습 구조로는 FCM 클러스터링 알고리즘을 적용하고 중간층과 출력층 사이의 학습은 일반화된 델타학습 방법을 적용한다. 그리고 학습 성능을 개선하기 위하여 중간층과 출력층의 가중치 조정에 적용되는 학습률을 동적으로 조정하기 위해 퍼지 제어 시스템을 적용한다. 제안된 퍼지 신경망은 목표값과 출력값의 차이에 대한 절대값이 ${\epsilon}$ 보다 적거나 같으면 정확으로 분류하고 크면 부정확으로 분류하여 정확의 총 개수를 퍼지 제어 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 여권의 주어진 규격에 근거하여 사진 영역을 추출하고 추출된 사진 영역에 대하여 YCbCr와 RGB 정보를 이용하여 얼굴영역을 추출한다. 추출된 얼굴 영역을 PCA 알고리즘과 스냅샷(Snap-Shot) 방법을 적용하여 얼굴 영역의 위조를 판별한다. 제안된 방법의 여권 코드 인식과 얼굴 인증의 성능을 평가하기 위하여 실제 여권 영상에 적용한 결과, 기존의 방법보다 여권 코드 인식과 얼굴 인증에 있어서 효율적인 것을 확인하였다.s, whereas AVs provide much better security.크는 기준년도부터 2031년까지 5년 단위로 계획된 장래도로를 반영하여 구축된다. 교통주제도 및 교통분석용 네트워크는 국가교통DB구축사업을 통해 구축된 자료로서 교통체계효율화법 제9조의4에 따라 공공기관이 교통정책 및 계획수립 등에 활용할 수 있도록 제공하고 있다. 건설교통부의 승인절차를 거쳐 제공하며 활용 후에는 갱신자료 및 활용결과를 통보하는 과정을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따

  • PDF