• 제목/요약/키워드: FCM (Fuzzy C-Means) clustering

검색결과 161건 처리시간 0.035초

직관적 퍼지 C-평균 모델을 이용한 자기 공명 영상 분할 (MRI Data Segmentation Using Fuzzy C-Mean Algorithm with Intuition)

  • 김태현;박동철;정태경;이윤식;민수영
    • 전기전자학회논문지
    • /
    • 제15권3호
    • /
    • pp.191-197
    • /
    • 2011
  • 직관적 퍼지 c-평균 군집화 모델을 이용하는 자기공명 영상의 분할 방법이 본 논문에서 제안되었다. 본 논문에서 채택하는 fuzzy c-means with intuition (FCM-I)은 잡음의 영향을 줄이기 위하여 직관이라는 척도를 사용한다. 실제적 자기 공명 영상에 대해 영상 분할의 실험을 수행하고 기존의 몇몇 군집화 알고리즘과 성능을 비교하였다. 기존의 모델들과 성능을 비교한 결과, FCM-I 기반의 분할 방법은 잡음과 필요한 계수의 선택에 대해 상대적으로 강인하여, 영상 분할에 유용한 모델이 될 수 있음을 확인할 수 있었다.

축별 분할된 PSO-FCM을 이용한 외란 감소방안: 함정용 레이더의 위상변화 적용 (The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board)

  • 손현승;박진배;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.638-643
    • /
    • 2012
  • This paper presents an intelligent reduction method for external noise. The main idea comes from PSO-FCM (Particle Swam Optimization Fused fuzzy C-Means) clustering. The data of the target is transformed from the antenna coordinates to the vessel one and to the system coordinates. In the conversion, the overall noises hinder observer to get the exact position and velocity of the maneuvering target. While the filter is used for tracking system, unexpected acceleration becomes the main factor which makes the uncertainty. In this paper, the tracking efficiency is improved with the PSO-FCM and the compensation methodology. The acceleration is approximated from the external noise splitted by the proposed clustering method. After extracting the approximated acceleration, the rest in the noise is filtered by the filter and the compensation is added to after that. Proposed tracking method is applicable to the linear model and nonlinear one together. Also, it can do to the on-line system. Finally, some examples are provided to examine the reliability of the proposed method.

FCM 클러스터링 기반 비선형 기동표적의 외란분석 알고리즘 (External Noise Analysis Algorithm based on FCM Clustering for Nonlinear Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2346-2351
    • /
    • 2011
  • This paper presents the intelligent external noise analysis method for nonlinear maneuvering target. After recognizing maneuvering pattern of the target by the proposed method, we track the state of the target. The external noise can be divided into mere noise and acceleration using only the measurement. divided noise passes through the filtering step and acceleration is punched into dynamic model to compensate expected states. The acceleration is the most deterministic factor to the maneuvering. By dividing, approximating, and compensating the acceleration, we can reduce the tracking error effectively. We use the fuzzy c-means (FCM) clustering as the method to divide external noise. FCM can separate the acceleration from the noise without criteria. It makes the criteria with the data made by measurement at every sampling time. So it can show the adaptive tracking result. The proposed method proceeds the tracking target simultaneously with the learning process. Thus it can apply to the online system. The proposed method shows the remarkable tracking result on the linear and nonlinear maneuvering. Finally, some examples are provided to show the feasibility of the proposed algorithm.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

패턴인식을 위한 Interval Type-2 퍼지 PCM 알고리즘 (An Interval Type-2 Fuzzy PCM Algorithm for Pattern Recognition)

  • 민지희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.102-107
    • /
    • 2009
  • Fuzzy C-Means(FCM)의 단점을 극복하기 위해 제안되었던 PCM은 잡음에는 강하지만 초기 파라미터 값에 민감하고, 상대적으로 가까이에 위치한 prototype들을 형성하는 패턴들의 경우에는 최종 prototype의 위치가 겹치는(동일한) 결과가 나올 수 있다는 단점이 있다. 이러한 PCM의 단점을 극복하기 위해 여러 방법이 제안되었지만, 본 논문에서는 PCM 알고리즘에 Interval Type 2 Fuzzy 접근 방법을 적용하여 PCM 알고리즘의 파라미터에 존재하는 uncertainty를 제어함으로써 성능을 향상시키는 방법을 제안한다.

클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석 (Design and Analysis of TSK Fuzzy Inference System using Clustering Method)

  • 오성권
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.132-136
    • /
    • 2014
  • 본 논문에서는 주어진 데이터 전처리를 통한 새로운 형태의 TSK기반 퍼지 추론 시스템을 제안한다. 제안된 모델은 주어진 데이터의 효율적인 처리를 위해 클러스터링 기법인 Fuzzy C-Means 클러스터링 방법을 이용하였다. 제안된 새로운 형태의 퍼지추론 시스템의 전반부는 FCM 을 통하여 정규화된 멤버쉽 함수와 클러스터 수를 결정하기 때문에, 멤버쉽함수의 형태 및 개수를 정의할 필요가 없어, 모델의 구조 또한 간단한 형태를 이룬다. 본 논문에서 사용된 후반부는 4가지 형태로-간략추론, 1차선형추론, 2차선형추론, 변형된 2차선형추론-가 있으며, 이는 효율적인 후반부구조를 찾는데 주도적인 역할을 한다. 또한 제안된 모델의 후반부 파라미터 계수는 Weighted Least Squares Estimation(WLSE)을 사용하여 동정하며, Least Squares Estimation(LSE)를 적용한 모델의 성능과 비교한다. 마지막으로, Boston housing 데이터를 사용하여 제안된 모델의 성능을 평가하였다.

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

FCM 알고리즘을 이용한 요부 근육 양자화 (Quantization of Lumbar Muscle using FCM Algorithm)

  • 김광백
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.27-31
    • /
    • 2013
  • 본 논문에서는 요부 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에 나타낸다. 본 논문에서 제안하는 기법과 히스토그램 기반 양자화 기법에 대해 15장의 요부 초음파 영상에 적용한 결과, 본 논문에서 제안된 양자화 방법이 효과적인 것을 확인할 수 있었다.

GA 기반 퍼지 제어기의 설계 및 트럭 후진제어 (A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control)

  • 곽근창;김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.

정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계 (Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation)

  • 박호성;진용하;오성권
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.