• Title/Summary/Keyword: FCM(Fuzzy C-means Method)

Search Result 120, Processing Time 0.034 seconds

A Density Estimation based Fuzzy C-means Algorithm for Image Segmentation (영상분할을 위한 밀도추정 바탕의 Fuzzy C-means 알고리즘)

  • Ko, Jeong-Won;Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2007
  • The Fuzzy E-means (FCM) algorithm is a widely used clustering method that incorporates probabilitic memberships. Due to these memberships, it can be sensitive to noise data. In this paper, we propose a new fuzzy C-means clustering algorithm by incorporating the Parzen Window method to include density information of the data. Several experimental results show that our proposed density-based FCM algorithm outperforms conventional FCM especially for data with noise and it is not sensitive to initial cluster centers.

A Non-linear Variant of Global Clustering Using Kernel Methods (커널을 이용한 전역 클러스터링의 비선형화)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means (FCM) is a simple but efficient clustering algorithm using the concept of a fuzzy set that has been proved to be useful in many areas. There are, however, several well known problems with FCM, such as sensitivity to initialization, sensitivity to outliers, and limitation to convex clusters. In this paper, global fuzzy c-means (G-FCM) and kernel fuzzy c-means (K-FCM) are combined to form a non-linear variant of G-FCM, called kernel global fuzzy c-means (KG-FCM). G-FCM is a variant of FCM that uses an incremental seed selection method and is effective in alleviating sensitivity to initialization. There are several approaches to reduce the influence of noise and accommodate non-convex clusters, and K-FCM is one of them. K-FCM is used in this paper because it can easily be extended with different kernels. By combining G-FCM and K-FCM, KG-FCM can resolve the shortcomings mentioned above. The usefulness of the proposed method is demonstrated by experiments using artificial and real world data sets.

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

Improved TI-FCM Clustering Algorithm in Big Data (빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.419-424
    • /
    • 2019
  • The FCM algorithm finds the optimal solution through iterative optimization technique. In particular, there is a difference in execution time depending on the initial center of clustering, the location of noise, the location and number of crowded densities. However, this method gradually updates the center point, and the center of the initial cluster is shifted to one side. In this paper, we propose a TI-FCM(Triangular Inequality-Fuzzy C-Means) clustering algorithm that determines the cluster center density by maximizing the distance between clusters using triangular inequality. The proposed method is an effective method to converge to real clusters compared to FCM even in large data sets. Experiments show that execution time is reduced compared to existing FCM.

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

Initialization of Fuzzy C-Means Using Kernel Density Estimation (커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM) is one of the most widely used clustering algorithms and has been used in many applications successfully. However, FCM has some shortcomings and initial prototype selection is one of them. As FCM is only guaranteed to converge on a local optimum, different initial prototype results in different clustering. Therefore, much care should be given to the selection of initial prototype. In this paper, a new initialization method for FCM using kernel density estimation (KDE) is proposed to resolve the initialization problem. KDE can be used to estimate non-parametric data distribution and is useful in estimating local density. After KDE, in the proposed method, one initial point is placed at the most dense region and the density of that region is reduced. By iterating the process, initial prototype can be obtained. The initial prototype such obtained showed better result than the randomly selected one commonly used in FCM, which was demonstrated by experimental results.

A Type 2 Fuzzy C-means (제2종 퍼지 집합을 이용한 퍼지 C-means)

  • Hwang, Cheul;Rhee, Fransk Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.16-19
    • /
    • 2001
  • This paper presents a type-2 fuzzy C-means (FCM) algorithm that is an extension of the conventional fuzzy C-means algorithm. In our proposed method, the membership values for each pattern are extended as type-2 fuzzy memberships by assigning membership grades to the type-1 memberships. In doing so, cluster centers that are estimated by type-2 memberships may converge to a more desirable location than cluster centers obtained by a type-1 FCM method in the presence of noise.

  • PDF

An Extension of Possibilistic Fuzzy C-means using Regularization (Regularization을 이용한 Possibilistic Fuzzy C-means의 확장)

  • Heo, Gyeong-Yong;NamKoong, Young-Hwan;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means (FCM) and possibilistic c-means (PCM) are the two most well-known clustering algorithms in fuzzy clustering area, and have been applied in many applications in their original or modified forms. However, FCM's noise sensitivity problem and PCM's overlapping cluster problem are also well known. Recently there have been several attempts to combine both of them to mitigate the problems and possibilistic fuzzy c-means (PFCM) showed promising results. In this paper, we proposed a modified PFCM using regularization to reduce noise sensitivity in PFCM further. Regularization is a well-known technique to make a solution space smooth and an algorithm noise insensitive. The proposed algorithm, PFCM with regularization (PFCM-R), can take advantage of regularization and further reduce the effect of noise. Experimental results are given and show that the proposed method is better than the existing methods in noisy conditions.

Identification Methodology of FCM-based Fuzzy Model Using Particle Swarm Optimization (입자 군집 최적화를 이용한 FCM 기반 퍼지 모델의 동정 방법론)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Son, Myung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.184-192
    • /
    • 2011
  • In this study, we introduce a identification methodology for FCM-based fuzzy model. The two underlying design mechanisms of such networks involve Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on FCM clustering method for efficient processing of data and the optimization of model was carried out using PSO. The premise part of fuzzy rules does not construct as any fixed membership functions such as triangular, gaussian, ellipsoidal because we build up the premise part of fuzzy rules using FCM. As a result, the proposed model can lead to the compact architecture of network. In this study, as the consequence part of fuzzy rules, we are able to use four types of polynomials such as simplified, linear, quadratic, modified quadratic. In addition, a Weighted Least Square Estimation to estimate the coefficients of polynomials, which are the consequent parts of fuzzy model, can decouple each fuzzy rule from the other fuzzy rules. Therefore, a local learning capability and an interpretability of the proposed fuzzy model are improved. Also, the parameters of the proposed fuzzy model such as a fuzzification coefficient of FCM clustering, the number of clusters of FCM clustering, and the polynomial type of the consequent part of fuzzy rules are adjusted using PSO. The proposed model is illustrated with the use of Automobile Miles per Gallon(MPG) and Boston housing called Machine Learning dataset. A comparative analysis reveals that the proposed FCM-based fuzzy model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.