• 제목/요약/키워드: FBG (Fiber Bragg grating) sensor

검색결과 204건 처리시간 0.026초

광섬유 브래그 격자를 이용한 촉각 힘 센서의 개발 (Development of Tactile Force Sensor using Fiber Bragg Grating)

  • 김만섭;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.811-816
    • /
    • 2004
  • The tactile force sensor was studied using Fiber Bragg Grating (FBG). The FBG is able to multiplex easily and is immune to electromagnetic environment. A sensor frame was designed to a cantilever beam type. Strain of a beam is related with the peak shift of a bragg wavelength. Finite Element Method (FEM) was used for getting an appropriate thickness from 0.2 mm to 0.3 mm thick. FEM results showed that 0.3 mm thick was suitable for the force range 10 N. The force resolutions of 0.039 N and 0.113 N were obtained with optical spectrum analyser and tunable Fabry-Perot filter, respectively.

  • PDF

광섬유 GRATING SENSOR를 이용한 초기재령 콘크리트의 변형 측정 (The Measurement of Concrete Deformations at Early Age using Fiber-Optic Bragg Grating Sensors)

  • 김지상;이상배;김남식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1238-1241
    • /
    • 2000
  • The deformations of concrete specimens were measured at early at early ages, in order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried at various locations in the beam-type RC specimens at the time of fabrication. In this experiment, the changes of strains in concrete at early age were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the mechanical/thermal behavior inside of concrete structures.

  • PDF

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.

어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정 (Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser)

  • 손경락;심준환;양규식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구 (A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor)

  • 방형준;송지용;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

광섬유 브래그 격자 센서를 이용한 복합재 구조물의 파손 검출 (Failure detection of composite structures using a fiber Bragg grating sensor)

  • 고종인;김천곤;홍창선
    • Composites Research
    • /
    • 제17권2호
    • /
    • pp.28-33
    • /
    • 2004
  • 광섬유 브래그 격자센서를 이용하여 인장하중을 받는 직교적출 복합해로 법에서 발생하는 파손신호를 계측하였다. 민감도와 주파수 대역성능을 향상시키기 위하여 수동 마흐_젠더 간섭계 방식의 복조기를 제안하였다. 제안한 FBG 센서시스템은 위상변조기와 같은 능동소자가 없기 때문에 구성이 간단하고 쉽게 구현할 수 있으며 충격이나 파손 신호와 같이 작은 진폭의 고주파 진동 측정이 가능하다. FBG 센서로 측정한 복합재료의 파손신호는 복합재료 시편의 90도 층에서 모재 균열이 진전하면서 발생하는 급격한 변형률 변이에 해당하는 초기 오프? 값과 최대 수백 킬로헤르쯔에 이르는 주파수로 진동하고 었었다.

광섬유 센서에 의한 말뚝 하중전이 측정 (Measurement of Pile Load Transfer using Optical Fiber Sensors)

  • 오정호;이원제;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 1999
  • It is essential to measure load transfer mechanism of pile to check the appropriateness of assumptions made for design purpose and to continuously monitor the behavior of pile foundation. Through many attempts to monitor the behavior of super-structure in civil engineering area using several optical fiber sensors have been made, application of optical fiber sensor technology on pile foundation has not been tried up to now. Load transfer of model piles during compression loading was measured by optical fiber sensors and compared with the measurement by strain gauges. Fiber Bragg Grating(FBG) sensor system was used since it has many advantages, such as easy multiplexing, high sensitivity, and simple fabrication. Besides the model pile tests, uniaxial tension test of steel bar and compression tests of mortar specimen were carried out to evaluate the performance of FBG sensors in embedded environments. The shift of refilming wavelength due to the strain in FBG sensor is converted to the strain at sensor location and the dependence between them is 1.28 pm/${\mu}$ strain. FBG sensors embedded in model pile showed a better survivability than strain gauges. Measured results of load transfer by both FBG sensors and strain gauges were similar, but FBG sensors showed a smoother trend than those by strain gauge. Based on the results of model pile test, it was concluded that the use of FBG sensor for strain measurement in pile has a great potential for the analysis of pile load transfer.

  • PDF

광섬유 BRAGG GRATING SENSOR를 이용한 철근 콘크리트 보의 변형 측정 (Fiber Bragg Grating Strain Sensing in Reinforced Concrete Beams)

  • 김지상;이상배;김남식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.423-428
    • /
    • 2001
  • Fiber Bragg Grating sensors currently attract a great deal of attentions, mainly due to their potentials in health monitoring for civil structures and composite materials. In this experimental study, the strains of reinforced concrete beams were measured to failure In order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried in concrete and attached to re-bars at the time of fabrication. In this experiment, the changes of strains in concrete and re-bars were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the behavior inside of reinforced concrete structures.

  • PDF

광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법 (On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler)

  • 이인재;이종민;이상배;황요하
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.

파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정 (Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser)

  • 엄진섭
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.