• Title/Summary/Keyword: FBB(Fully-Blocked Baffle)

Search Result 2, Processing Time 0.015 seconds

Effects of baffles through the parallel flow channel in a PEM fuel cell (PEM 연료전지 평행류 채널에서 Baffle의 영향)

  • Oh, Chang-Mook;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.9-14
    • /
    • 2008
  • The effects of baffles in PEM fuel cell with parallel flow channel has been simulated by using conmmercial program. The simulation has been conducted through the channel and there are four different heights of baffles, No Baffle($H_b$=0), Partially Blocked Baffle(0.25, 0.5, 0.75), Fully Blocked Baffle(1) conditions. The result shows that current density changes while placing a baffle at the various positions along the channel. Current density with a single baffle is higher than that without baffle and current density using Fully Blocked Baffle(FBB) is much higher than current density using Partially Blocked Baffle(PBB). When the baffle is closer to outlet of the channel, current density increases. It is found that pressure is related to current density. If the pressure is higher, the better performance will be expected.

  • PDF

Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis (전산해석을 통한 PEMFC 평행 유로에서 Baffle에 의한 출력특성 분석)

  • Kwon, Oh-Jung;Oh, Chang-Mook;Shin, Hee-Sun;Oh, Byeong Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • Research on flow channel designs of the separate plates is necessary to improve the PEMFC performance. On concerning the performance improvement of PEMFC, many recent studies have been made on the interdigitated flow channel using forced convection. In this paper, the interdigitated flow channel is similarly applied on the parallel flow channel with a baffle or baffles. Numerical analysis is performed by using a commercial multiphysics program, which is called COMSOL, on the parallel channel with the fully blocked baffle(FBB) and there are three variables, the position of baffle, flow direction and flow velocity. Each power of the variables is resulted from the fixed 0.5V, the voltage from 80 percents of the maximum power. Finally, based on the full factorial designs(FFD), one of the design of experiments(DOE), each factor which has several levels lead to the conclusion. The analysis of the main effects and interactions of the factors is useful to find the most influenced factor to improve the power.