• Title/Summary/Keyword: FAiMTa

Search Result 2, Processing Time 0.015 seconds

Manufacturing Functional Nano-Composites by Using Field-Aided Micro-Tailoring Manipulation (Field-Aided Micro-Tailoring에 의한 기능성 나노복합재 제조)

  • Cho, Hee-Keun;Rhee, Juhun;Sim, Eun-Sup
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.178-185
    • /
    • 2012
  • One of a unique technique in manipulating a multifunctional composite is demonstrated in this study. An electric field is applied to a liquid suspension in order to align the inclusions along with the direction electric field. This is called FAiMTa(Field Aided Micro Tailoring). It makes orthotropic polymer composites by arranging the micro and/or nano size particle inclusions in chain-line formation. Several kinds of particles such as $Al_2O_3$, graphite, CNT(Carbon Nano Tube), W(Tungsten) are tested to verify the effectiveness of the FAiMTa. The particles redistributed in an epoxy suspension and their coupons show that mechanical and thermal properties of orthotropic and random composites containing those particles depend on the trend of particles' alignment. The micro-images of the functional composite from FAiMTa have been captures and their physical properties demonstrate their wide-range and state-of-the-art application for advanced multifunctional composites.

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • v.12 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.