• 제목/요약/키워드: FAST (Fatigue, Aerodynamics, Structure and Turbulence)

검색결과 3건 처리시간 0.023초

Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade (1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석)

  • Cho Bong-Hyun;Lee Chang-Su;Choi Sung-Ok;Ryu Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part II: Model-II

  • Kim, Junbae;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.213-225
    • /
    • 2020
  • Floating Offshore Wind Turbines (FOWT) installed in the deep sea regions where stable and strong wind flows are abundant would have significantly improved energy production capacity. When designing FOWT, it is essential to understand the stability and motion performance of the floater. Water tank model tests are required to evaluate these aspects of performance. This paper describes a model test and numerical simulation for a 750-kW semi-submersible platform wind turbine model-II. In the previous model test, the 750-kW FOWT model-I suffered slamming phenomena from extreme wave conditions. Because of that, the platform freeboard of model-II was increased to mitigate the slamming load on the platform deck structure in extreme conditions. Also, the model-I pitch Response Amplitude Operators (RAO) of simulation had strong responses to the natural frequency region. Thus, the hub height of model-II was decreased to reduce the pitch resonance responses from the low-frequency response of the system. Like the model-I, 750-kW FOWT model-II was built with a 1/40 scale ratio. Furthermore, the experiments to evaluate the performance characteristics of the model-II wind turbine were executed at the same location and in the same environment conditions as were those of model-I. These tests included a free decay test, and tests of regular and irregular wave conditions. Both the experimental and simulation conditions considered the blade rotating effect due to the wind. The results of the model tests were compared with the numerical simulations of the FOWT using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) code from the National Renewable Energy Laboratory (NREL).