• Title/Summary/Keyword: FAO Penman Monteith

Search Result 60, Processing Time 0.03 seconds

Estimation of Paddy Rice Crop Coefficients for FAO Penman-Monteith and Modified Penman Method (논벼에 대한 Penman-Monteith와 FAO Modified Penman 공식의 작물 계수 산정)

  • Yoo Seung-Hwan;Choi Jin-Yong;Jang Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.13-23
    • /
    • 2006
  • In 1998, Food and Agriculture Organization addressed that FAO Modified Penman method possibly over-estimates consumptive use of water comparing to the measured reference crop evapotranspiration (PET) and Penman-Monteith method can be better choice for accurate PET estimation. Nevertheless it is still difficult to find research efforts about paddy rice crop coefficient for Penman-Monteith method. This study aims to estimate paddy rice crop coefficients for Penman-Monteith and FAO modified Penman methods in the manner of comparing two equations. To estimate the crop coefficients, measured evapotranspiration data during 1982-1986 and 1995-1997 were used. The average Penman-Monteith crop coefficients ranged from 0.78 to 1.58 for translated paddy rice and from 0.87 to 1.74 for flood-direct seeded paddy rice. The average FAO Modified Penman crop coefficients ranged from 0.65 to 1.35 for translated paddy rice and from 0.70 to 1.58 for flood-direct seeded paddy rice.

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration of SLURP Model (MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량에 미치는 영향 평가)

  • HA, Rim;SHIN, Hyung-Jin;Park, Geun-Ae;KIM, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.495-504
    • /
    • 2008
  • Evapotranspiration (ET) is an important state variable while simulating daily streamflow in hydrological models. In the estimation of ET, for example, when using FAO Penman Monteith equation, the LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAI from MODIS satellite data is available, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. Four years (2001-2004) of MODIS LAI was prepared for the evaluation of Penman Monteith ET in the continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungju watershed ($6661.3km^2$) located in the upstream of Han river basin. For four years (2001-2004) dam inflow data and meteorological data, the model was calibrated and verified using MODIS LAI data. The average Nash-Sutcliffe model efficiency was 0.66. The 4 years watershed average Penman Monteith ETs of deciduous, coniferous, and mixed forest were 639.1, 422.4, and 631.6 mm for average MODIS LAI values of 3.64, 3.50, and 3.63 respectively.

A Study on Calibration of Tank Model with Soil Moisture Structure (토양수분 저류구조를 가진 탱크모형의 보정에 관한 연구)

  • Kang, Shin-Uk;Lee, Dong-Ryul;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.133-144
    • /
    • 2004
  • A Tank Model composed of 4 tanks with soil moisture structure was applied to Daecheong Dam and Soyanggang Dam watersheds. Calibration and verification were repeated 332 and 472 times for each watershed using SCE-UA global optimization method for different calibration periods and objective functions. Four different methods of evapotranspiration calculation were used and evaluated. They are pan evaporation, 1963 Penman, FAO-24 Penman-Monteith, and FAO-56 Penman-Monteith methods. Tank model with soil moisture structure showed better results than the standard tank model for daily rainfall-runoff simulation. Two types of objective function for model calibration were found. Proper calibration period are 3 years, in which dry year and flood year are included. If a calibrationperiod has an inadequate runoff rate, the period should be more than 8 years. The four methods of eyapotranspiraton computation showed similar results, but 1963 Penman method was slightly inferior to the other methods.

Estimation of Paddy Crop Coefficients for Penman-Monteith Method (논벼에 대한 Penman-Monteith 공식의 작물 계수 산정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Jang, Min-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.20-25
    • /
    • 2005
  • In 1998, Food and Agriculture Organization addressed that FAO Modified Penman method possibly overestimates consumptive use of water comparing to the measured reference crop evapotranspiration (PET) and Penman-Monteith method can be better choice for accurate PET estimation. Nevertheless it is still difficult to find research efforts about paddy rice crop coefficient for Penman-Monteith method. This study aims to estimate paddy rice crop coefficients for Penman-Monteith method. To estimate the crop coefficients, measured evapotranspiration data during 1982-1986 were used. The average Penman-Monteith crop coefficients for transplanted paddy rice were ranged in $0.78\;{\sim}\;1.58$.

  • PDF

Applicability Analysis of FAO56 Penman-Monteith Methodology for Estimating Potential Evapotranspiration in Andong Dam Watershed Using Limited Meteorological Data (제한적인 기상자료 조건에서의 잠재증발산량 추정을 위한 FAO56 Penman-Monteith 방법의 적용성 분석 - 안동댐 유역을 사례로 -)

  • Kim, Sea Jin;Kim, Moon-il;Lim, Chul-Hee;Lee, Woo-Kyun;Kim, Baek-Jo
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.125-143
    • /
    • 2017
  • This study is conducted to estimate potential evapotranspiration of 10 weather observing systems in Andong Dam watershed with FAO56 Penman-Monteith (FAO56 PM) methodology using the meteorological data from 2013 to 2014. Also, assuming that there is no solar radiation data, humidity data or wind speed data, the potential evapotranspiration was estimated by FAO56 PM and the results were evaluated to discuss whether the methodology is applicable when meteorological dataset is not available. Then, the potential evapotranspiration was estimated with Hargreaves method and compared with the potential evapotranspiration estimated by FAO56 PM only with the temperature dataset. As to compare the potential evapotranspiration estimated from the complete meteorological dataset and that estimated from limited dataset, statistical analysis was performed using the Root Mean Square Error (RMSE), the Mean Bias Error (MBE), the Mean Absolute Error (MAE) and the coefficient of determination ($R^2$). Also the Inverse Distance Weighted (IDW) method was performed to conduct spatial analysis. From the result, even when the meteorological data is limited, FAO56 PM showed relatively high accuracy in calculating potential evapotranspiration by estimating the meteorological data.

Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model (위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구)

  • Ha, Rim;Shin, Hyung-Jin;Lee, Mi-Seon;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.233-242
    • /
    • 2010
  • SEBAL (Surface Energy Balance Algorithm for Land) developed by Bastiaanssen (1995) is an image-processing model comprisedof twenty-five sub models that calculates spatial evapotranspiration (ET) and other energy exchanges at the surface. SEBAL uses image data from Landsat or other satellites measuring thermal infrared radiation, visible and near infrared. In this study, the model was applied to Gyeongancheon watershed, the main tributary of Han river Basin. ET was computed on apixel-by-pixel basis from an energy balance using 4 years (2001-2004) Landsat and MODIS images. The scale effect between Landsat (30 m) and MODIS (1 km) was evaluated. The results both from Landsat and MODIS were compared with FAO Penman-Monteith ET. The absolute errors between satellite ETs and Penman-Monteith ET were within 12%. The spatial and temporal characteristics of ET distribution within the watershed were also analyzed.

Comparison of reference evapotranspiration estimation methods with limited data in South Korea

  • Jeon, Min-Gi;Nam, Won-Ho;Hong, Eun-Mi;Hwang, Seonah;Ok, Junghun;Cho, Heerae;Han, Kyung-Hwa;Jung, Kang-Ho;Zhang, Yong-Seon;Hong, Suk-Young
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.137-149
    • /
    • 2019
  • Accurate estimation of reference evapotranspiration (RET) is important to quantify crop evapotranspiration for sustainable water resource management in hydrological, agricultural, and environmental fields. It is estimated by different methods from direct measurements with lysimeters, or by many empirical equations suggested by numerous modeling using local climatic variables. The potential to use some such equations depends on the availability of the necessary meteorological parameters for calculating the RET in specific climatic conditions. The objective of this study was to determine the proper RET equations using limited climatic data and to analyze the temporal and spatial trends of the RET in South Korea. We evaluated the FAO-56 Penman-Monteith equation (FAO-56 PM) by comparing several simple RET equations and observed small fan evaporation. In this study, the modified Penman equation, Hargreaves equation, and FAO Penman-Monteith equation with missing solar radiation (PM-Rs) data were tested to estimate the RET. Nine weather stations were considered with limited climatic data across South Korea from 1973 - 2017, and the RET equations were calculated for each weather station as well as the analysis of the mean error (ME), mean absolute error (MAE), and root mean square error (RMSE). The FAO-56 PM recommended by the Food Agriculture Organization (FAO) showed good performance even though missing solar radiation, relative humidity, and wind speed data and could still be adapted to the limited data conditions. As a result, the RET was increased, and the evapotranspiration rate was increased more in coastal areas than inland.

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration Estimation of SLURP Model (MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량 추정에 미치는 영향 평가)

  • Ha, Rim;Shin, Hyung-Jin;Hong, Woo-Yong;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1087-1091
    • /
    • 2008
  • Evapotranspiration (ET) is an important factor while simulating daily streamflow in hydrological models. The LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably in the estimation of ET, for example, when using FAO Penman Monteith equation. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAIs from MODIS satellite data are avaliable, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. The 4 years (2001-2004) MODIS LAI data were prepared for the evaluation of continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungjudam watershed ($6661.58\;km^2$) located in the upstream of Han river basin of South Korea. From the model results, the FAO Penman Monteith ET was affected by the MODIS LAIs. Especially for the ET of deciduous forest, the Total ET was 33.9 % lager than coniferous forest for the 3.8 % lager of LAI. The watershed average LAI caused a 7.0 % decrease in average soil moisture of the watershed and 14.3 % decrease of ground water recharge.

  • PDF

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

Improvement of agricultural water demand estimation focusing on paddy water demand (논용수 수요량 산정을 중심으로 한 농업용수 수요량 산정방법의 개선)

  • Park, Chang Kun;Hwang, Junshik;Seo, Yongwon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.939-949
    • /
    • 2020
  • Currently, the demand for farmland is steadily decreasing due to changes in the agricultural environment and dietary life. In line with this, the government adopted an integrated water management with the enactment of the Framework Act on Water Management on June 2019. Therefore, it is required to take a closer look at agricultural water demand that accounts for 61% of water use for efficient water resources management. In this study, the overal process was evaluated for estimating agricultural water demand. More specifically, agricultural water demand for paddy field, which comprises 67% to 87% of agricultural water demand, was reviewed in detail. The biggest issue in estimating the paddy field water demand is the selection of the method for potential evapotranspiration. FAO recommends Penman-Monteith, but, currently, our criteria suggest a modified Penman equation that shows over estimation. Also, the crop coefficient, which is the main factor in evaluating evapotranspiration, has an issue that does not consider the current climate and crop varieties because it was developed 23 years ago. Comparing the Modified Penman and Penman-Monteith equations using the data from Jeonju National Weather Service, the modified Penman equation showed a big difference compared to the Penman-Monteith equation. When the crop coefficient was applied, the difference between late May and late August increased, where the amount of evapotranspiration was high. The estimation process was applied to four study reservoirs in Gimje. Comparing the estimated water demand with the supplied water record from reservoirs, the results showed that the estimation accuracy depends on not just the potential evapotranspiration, but also the standard water storing level in paddy fields.