• 제목/요약/키워드: FAK

검색결과 58건 처리시간 0.039초

STK899704 inhibits stemness of cancer stem cells and migration via the FAK-MEK-ERK pathway in HT29 cells

  • Jang, Hui-Ju;Bak, Yesol;Pham, Thu-Huyen;Kwon, Sae-Bom;Kim, Bo-Yeon;Hong, JinTae;Yoon, Do-Young
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.596-601
    • /
    • 2018
  • Colon cancer is one of the most lethal and common malignancies worldwide. STK899704, a novel synthetic agent, has been reported to exhibit anticancer effects towards numerous cancer cells. However, the effect of STK899704 on the biological properties of colon cancer, including cancer cell migration and cancer stem cells (CSCs), remains unknown. Here, we examined the inhibitory effect of STK899704 on cell migration and CSC stemness. In the wound healing assay, STK899704 significantly inhibited the motility of colon cancer cells. Furthermore, STK899704 downregulated the mRNA expression levels of the cell migration mediator focal adhesion kinase (FAK). STK899704 also suppressed mitogen-activated protein kinase kinase and extracellular signal-regulated kinase, which are downstream signaling molecules of FAK. Additionally, STK899704 inhibited stemness gene expression and sphere formation in colon cancer stem cells. These results suggest that STK899704 can be used to treat human colon cancer.

Silencing MR-1 attenuates atherosclerosis in ApoE-/- mice induced by angiotensin II through FAK-Akt -mTOR-NF-kappaB signaling pathway

  • Chen, Yixi;Cao, Jianping;Zhao, Qihui;Luo, Haiyong;Wang, Yiguang;Dai, Wenjian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.127-134
    • /
    • 2018
  • Myofibrillogenesis regulator-1 (MR-1) is a novel protein involved in cellular proliferation, migration, inflammatory reaction and signal transduction. However, little information is available on the relationship between MR-1 expression and the progression of atherosclerosis. Here we report atheroprotective effects of silencing MR-1 in a model of Ang II-accelerated atherosclerosis, characterized by suppression focal adhesion kinase (FAK) and nuclear factor kappaB ($NF-{\kappa}B$) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the siRNA-MR-1 substantially attenuated Ang II-accelerated atherosclerosis with stabilization of atherosclerotic plaques and inhibited FAK, Akt, mammalian target of rapamycin (mTOR) and NF-kB activation, which was associated with suppression of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in Ang II-treated vascular smooth muscle cells (VSMCs) and macrophages: siRNA-MR-1 inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of Ang II and highlight actions of silencing MR-1 to inhibit Ang II signaling, which is atheroprotective.

Epigenetic silencing of olfactomedin-4 enhances gastric cancer cell invasion via activation of focal adhesion kinase signaling

  • Guo, Li-Li;He, Zhao-Cai;Yang, Chang-Qing;Qiao, Pei-Tang;Yin, Guo-Ling
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.630-635
    • /
    • 2015
  • Downregulation of olfactomedin-4 (OLFM4) is associated with tumor progression, lymph node invasion and metastases. However, whether or not downregulation of OLFM4 is associated with epigenetic silencing remains unknown. In this study, we investigate the role of OLFM4 in gastric cancer cell invasion. We confirm the previous result that OLFM4 expression is increased in gastric cancer tissues and decreases with an increasing number of metastatic lymph nodes, which are associated with OLFM4 promoter hypermethylation. Overexpression of OLFM4 in gastric cancer cells had an inhibitory effect on cell invasion. Furthermore, we found that focal adhesion kinase (FAK) was negatively correlated with OLFM4 in regards to lymph node metastasis in gastric cancer tissues. Also, inhibition of FAK induced by OLFM4 knockdown resulted in a decrease in cell invasion. Thus, our study demonstrates that epigenetic silencing of OLFM4 enhances gastric cancer cell invasion via activation of FAK signaling.

Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells

  • Ye, Dong-Jin;Kwon, Yeo-Jung;Shin, Sangyun;Baek, Hyoung-Seok;Shin, Dong-Won;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.321-328
    • /
    • 2017
  • Steroid sulfatase (STS) is an enzyme responsible for the hydrolysis of aryl and alkyl sulfates. STS plays a pivotal role in the regulation of estrogens and androgens that promote the growth of hormone-dependent tumors, such as those of breast or prostate cancer. However, the molecular function of STS in tumor growth is still not clear. To elucidate the role of STS in cancer cell proliferation, we investigated whether STS is able to regulate the integrin signaling pathway. We found that overexpression of STS in HeLa cells increases the protein and mRNA levels of integrin ${\beta}1$ and fibronectin, a ligand of integrin ${\alpha}5{\beta}1$. Dehydroepiandrosterone (DHEA), one of the main metabolites of STS, also increases mRNA and protein expression of integrin ${\beta}1$ and fibronectin. Further, STS expression and DHEA treatment enhanced phosphorylation of focal adhesion kinase (FAK) at the Tyr 925 residue. Moreover, increased phosphorylation of ERK at Thr 202 and Tyr 204 residues by STS indicates that STS activates the MAPK/ERK pathway. In conclusion, these results suggest that STS expression and DHEA treatment may enhance MAPK/ERK signaling through up-regulation of integrin ${\beta}1$ and activation of FAK.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

Cobalt chloride에 의해 유도되는 상피-중간엽 이행에서의 국소부착 단백질의 인산화의 역할 규명 (Role of FAK Phosphorylation in Cobalt Chloride-Induced Epithelial-to-Mesenchymal-Like Transition)

  • 남주옥
    • 생명과학회지
    • /
    • 제21권2호
    • /
    • pp.286-291
    • /
    • 2011
  • 본 연구는 인간 폐암세포의 저산소 상태를 재현하기 위한 $CoCl_2$의 처리 조건을 최적화 하였고, 최적화 된 저산소 상태에서 인간 폐암세포의 암화 과정 및 기전을 규명하였다. 인간 폐암세포, A549와 H460에 500 ${\mu}M$ $CoCl_2$를 24시간 처리하였을 때 저산소 상태의 대표적인 전사인자, HIF-$1{\alpha}$의 발현이 증가함을 확인하였고 인간 폐암세포들의 성장에는 전혀 영향을 미치지 않음을 확인하였다. 또한 $CoCl_2$를 처리한 인간 폐암 세포에서 상피-중간엽 이행(epithelial-to-mesenchymal-like transition)의 대표적인 마커인 E-cadherin 발현의 감소와 ${\alpha}$-SMA의 증가를 확인하였고, 세포-세포 간 junction 부위가 깨어짐을 E-cadherin 형광염색 실험을 통하여 확인하였다. 더 나아가 $CoCl_2$를 처리한 인간 폐암 세포에서 상피-중간엽 이행의 분자적 기전을 밝히기 위해 세포벽에 존재하는 인테그린(integrin)의 발현을 웨스턴 블랏팅과 FACS분석을 통하여 알아본 결과, $CoCl_2$를 처리한 인간 폐암세포에서 인테그린 ${\beta}3$발현의 증가를 확인하였다. 뿐만 아니라, $CoCl_2$를 처리한 인간 폐암세포에서 인테그린 ${\beta}3$의 하부 신호전달 물질인 국소부착 카이네이즈(FAK)의 인산화가 증가함을 확인하였다. 상기의 결과로서, 국소부착 카이네이즈의 인산화를 저해함으로써 인간 폐암세포가 악성세포로 전이되는 것을 저해할 수 있을 것으로 기대 되어진다.

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

Met inactivation by S-allylcysteine suppresses the migration and invasion of nasopharyngeal cancer cells induced by hepatocyte growth factor

  • Cho, Oyeon;Hwang, Hye-Sook;Lee, Bok-Soon;Oh, Young-Taek;Kim, Chul-Ho;Chun, Mison
    • Radiation Oncology Journal
    • /
    • 제33권4호
    • /
    • pp.328-336
    • /
    • 2015
  • Purpose: Past studies have reported that S-allylcysteine (SAC) inhibits the migration and invasion of cancer cells through the restoration of E-cadherin, the reduction of matrix metalloproteinase (MMP) and Slug protein expression, and inhibition of the production of reactive oxygen species (ROS). Furthermore, evidence is emerging that shows that ROS induced by radiation could increase Met activation. Following on these reports of SAC and Met, we investigated whether SAC could suppress Met activation. Materials and Methods: Wound healing, invasion, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT), soft agar colony forming, western blotting, and gelatin zymography assays were performed in the human nasopharyngeal cancer cell lines HNE1 and HONE1 treated with SAC (0, 10, 20, or 40 mM) and hepatocyte growth factor (HGF). Results: This study showed that SAC could suppress the migration and invasion of HNE1 and HONE1 cell lines by inhibiting p-Met. An increase of migration and invasion induced by HGF and its decrease in a dose dependent manner by SAC in wound healing and invasion assays was observed. The reduction of p-Met by SAC was positively correlated with p-focal adhesion kinase (p-FAK) and p-extracellular related kinase (p-ERK in both cell lines). SAC reduced Slug, MMP2, and MMP9 involved in migration and invasion with the inhibition of Met-FAK signaling. Conclusion: These results suggest that SAC inhibited not only Met activation but also the downstream FAK, Slug, and MMP expression. Finally, SAC may be a potent anticancer compound for nasopharyngeal cancer treated with radiotherapy.