• Title/Summary/Keyword: FACTs

Search Result 2,495, Processing Time 0.033 seconds

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF

A Study on Forest Insurance (산림보험(山林保險)에 관한 연구(硏究))

  • Park, Tai Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.15 no.1
    • /
    • pp.1-38
    • /
    • 1972
  • 1. Objective of the Study The objective of the study was to make fundamental suggestions for drawing a forest insurance system applicable in Korea by investigating forest insurance systems undertaken in foreign countries, analyzing the forest hazards occurred in entire forests of Korea in the past, and hearing the opinions of people engaged in forestry. 2. Methods of the Study First, reference studies on insurance at large as well as on forest insurance were intensively made to draw the characteristics of forest insurance practiced in main forestry countries, Second, the investigations of forest hazards in Korea for the past ten years were made with the help of the Office of Forestry. Third, the questionnaires concerning forest insurance were prepared and delivered at random to 533 personnel who are working at different administrative offices of forestry, forest stations, forest cooperatives, colleges and universities, research institutes, and fire insurance companies. Fourth, fifty three representative forest owners in the area of three forest types (coniferous, hardwood, and mixed forest), a representative region in Kyonggi Province out of fourteen collective forest development programs in Korea, were directly interviewed with the writer. 3. Results of the Study The rate of response to the questionnaire was 74.40% as shown in the table 3, and the results of the questionaire were as follows: (% in the parenthes shows the rates of response; shortages in amount to 100% were due to the facts of excluding the rates of response of minor respondents). 1) Necessity of forest insurance The respondents expressed their opinions that forest insurance must be undertaken to assure forest financing (5.65%); for receiving the reimbursement of replanting costs in case of damages done (35.87%); and to protect silvicultural investments (46.74%). 2) Law of forest insurance Few respondents showed their views in favor of applying the general insurance regulations to forest insurance practice (9.35%), but the majority of respondents were in favor of passing a special forest insurance law in the light of forest characteristics (88.26%). 3) Sorts of institutes to undertake forest insurance A few respondents believed that insurance companies at large could take care of forest insurance (17.42%); forest owner's mutual associations would manage the forest insurance more effectively (23.53%); but the more than half of the respondents were in favor of establishing public or national forest insurance institutes (56.18%). 4) Kinds of risks to be undertaken in forest insurance It would be desirable that the risks to be undertaken in forest insurance be limited: To forest fire hazards only (23.38%); to forest fire hazards plus damages made by weather (14.32%); to forest fire hazards, weather damages, and insect damages (60.68%). 5) Objectives to be insured It was responded that the objectives to be included in forest insurance should be limited: (1) To artificial coniferous forest only (13.47%); (2) to both coniferous and broad-leaved artificial forests (23.74%); (3) but the more than half of the respondents showed their desire that all the forests regardless of species and the methods of establishment should be insured (61.64%). 6) Range of risks in age of trees to be included in forest insurance The opinions of the respondents showed that it might be enough to insure the trees less than ten years of age (15.23%); but it would be more desirous of taking up forest trees under twenty years of age (32.95%); nevertheless, a large number of respondents were in favor of underwriting all the forest trees less than fourty years of age (46.37%). 7) Term of a forest insurance contract Quite a few respondents favored a contract made on one year basis (31.74%), but the more than half of the respondents favored the contract made on five year bases (58.68%). 8) Limitation in a forest insurance contract The respondents indicated that it would be desirable in a forest insurance contract to exclude forests less than five hectars (20.78%), but more than half of the respondents expressed their opinions that forests above a minimum volume or number of trees per unit area should be included in a forest insurance contract regardless of the area of forest lands (63.77%). 9) Methods of contract Some responded that it would be good to let the forest owners choose their forests in making a forest insurance contract (32.13%); others inclined to think that it would be desirable to include all the forests that owners hold whenerver they decide to make a forest insurance contract (33.48%); the rest responded in favor of forcing the owners to buy insurance policy if they own the forests that were established with subsidy or own highly vauable growing stock (31.92%) 10) Rate of premium The responses were divided into three categories: (1) The rate of primium is to be decided according to the regional degree of risks(27.72%); (2) to be decided by taking consideration both regional degree of risks and insurable values(31.59%); (3) and to be decided according to the rate of risks for the entire country and the insurable values (39.55%). 11) Payment of Premium Although a few respondents wished to make a payment of premium at once for a short term forest insurance contract, and an annual payment for a long term contract (13.80%); the majority of the respondents wished to pay the premium annually regardless of the term of contract, by employing a high rate of premium on a short term contract, but a low rate on a long term contract (83.71%). 12) Institutes in charge of forest insurance business A few respondents showed their desire that forest insurance be taken care of at the government forest administrative offices (18.75%); others at insurance companies (35.76%); but the rest, the largest number of the respondents, favored forest associations in the county. They also wanted to pay a certain rate of premium to the forest associations that issue the insurance (44.22%). 13) Limitation on indemnity for damages done In limitation on indemnity for damages done, the respondents showed a quite different views. Some desired compesation to cover replanting costs when young stands suffered damages and to be paid at the rate of eighty percent to the losses received when matured timber stands suffered damages(29.70%); others desired to receive compensation of the actual total loss valued at present market prices (31.07%); but the rest responded in favor of compensation at the present value figured out by applying a certain rate of prolongation factors to the establishment costs(36.99%). 14) Raising of funds for forest insurance A few respondents hoped to raise the fund for forest insurance by setting aside certain amount of money from the indemnity paid (15.65%); others wished to raise the fund by levying new forest land taxes(33.79%); but the rest expressed their hope to raise the fund by reserving certain amount of money from the surplus money that was saved due to the non-risks (44.81%). 15) Causes of fires The main causes of forest fires 6gured out by the respondents experience turned out to be (1) an accidental fire, (2) cigarettes, (3) shifting cultivation. The reponses were coincided with the forest fire analysis made by the Office of Forestry. 16) Fire prevention The respondents suggested that the most important and practical three kinds of forest fire prevention measures would be (1) providing a fire-break, (2) keeping passers-by out during the drought seasons, (3) enlightenment through mass communication systems. 4. Suggestions The writer wishes to present some suggestions that seemed helpful in drawing up a forest insurance system by reviewing the findings in the questionaire analysis and the results of investigations on forest insurance undertaken in foreign countries. 1) A forest insurance system designed to compensate the loss figured out on the basis of replanting cost when young forest stands suffered damages, and to strengthen credit rating by relieving of risks of damages, must be put in practice as soon as possible with the enactment of a specifically drawn forest insurance law. And the committee of forest insurance should be organized to make a full study of forest insurance system. 2) Two kinds of forest insurance organizations furnishing forest insurance, publicly-owned insurance organizations and privately-owned, are desirable in order to handle forest risks properly. The privately-owned forest insurance organizations should take up forest fire insurance only, and the publicly-owned ought to write insurance for forest fires and insect damages. 3) The privately-owned organizations furnishing forest insurance are desired to take up all the forest stands older than twenty years; whereas, the publicly-owned should sell forest insurance on artificially planted stands younger than twenty years with emphasis on compensating replanting costs of forest stands when they suffer damages. 4) Small forest stands, less than one hectare holding volume or stocked at smaller than standard per unit area are not to be included in a forest insurance writing, and the minimum term of insuring should not be longer than one year in the privately-owned forest insurance organizations although insuring period could be extended more than one year; whereas, consecutive five year term of insurance periods should be set as a mimimum period of insuring forest in the publicly-owned forest insurance organizations. 5) The forest owners should be free in selecting their forests in insuring; whereas, forest owners of the stands that were established with subsidy should be required to insure their forests at publicly-owned forest insurance organizations. 6) Annual insurance premiums for both publicly-owned and privately-owned forest insurance organizations ought to be figured out in proportion to the amount of insurance in accordance with the degree of risks which are grouped into three categories on the basis of the rate of risks throughout the country. 7) Annual premium should be paid at the beginning of forest insurance contract, but reduction must be made if the insuring periods extend longer than a minimum period of forest insurance set by the law. 8) The compensation for damages, the reimbursement, should be figured out on the basis of the ratio between the amount of insurance and insurable value. In the publicly-owned forest insurance system, the standard amount of insurance should be set on the basis of establishment costs in order to prevent over-compensation. 9) Forest insurance business is to be taken care of at the window of insurance com pnies when forest owners buy the privately-owned forest insurance, but the business of writing the publicly-owned forest insurance should be done through the forest cooperatives and certain portions of the premium be reimbursed to the forest cooperatives. 10) Forest insurance funds ought to be reserved by levying a property tax on forest lands. 11) In order to prevent forest damages, the forest owners should be required to report forest hazards immediately to the forest insurance organizations and the latter should bear the responsibility of taking preventive measures.

  • PDF

A Study on the Forest Land System in the YI Dynasty (이조시대(李朝時代)의 임지제도(林地制度)에 관(關)한 연구(硏究))

  • Lee, Mahn Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.22 no.1
    • /
    • pp.19-48
    • /
    • 1974
  • Land was originally communized by a community in the primitive society of Korea, and in the age of the ancient society SAM KUK-SILLA, KOKURYOE and PAEK JE-it was distributed under the principle of land-nationalization. But by the occupation of the lands which were permitted to transmit from generation to generation as Royal Grant Lands and newly cleared lands, the private occupation had already begun to be formed. Thus the private ownership of land originated by chiefs of the tribes had a trend to be gradually pervaded to the communal members. After the, SILLA Kingdom unified SAM KUK in 668 A.D., JEONG JEON System and KWAN RYO JEON System, which were the distribution systems of farmlands originated from the TANG Dynasty in China, were enforced to established the basis of an absolute monarchy. Even in this age the forest area was jointly controlled and commonly used by village communities because of the abundance of area and stocked volume, and the private ownership of the forest land was prohibited by law under the influence of the TANG Dynasty system. Toward the end of the SILLA Dynasty, however, as its centralism become weak, the tendency of the private occupancy of farmland by influential persons was expanded, and at the same time the occupancy of the forest land by the aristocrats and Buddhist temples began to come out. In the ensuing KORYO Dynasty (519 to 1391 A.D.) JEON SI KWA System under the principle of land-nationalization was strengthened and the privilege of tax collection was transferred to the bureaucrats and the aristocrats as a means of material compensation for them. Taking this opportunity the influential persons began to expand their lands for the tax collection on a large scale. Therefore, about in the middle of 11th century the farmlands and the forest lands were annexed not only around the vicinity of the capital but also in the border area by influential persons. Toward the end of the KORYO Dynasty the royal families, the bureaucrats and the local lords all possessed manors and occupied the forest lands on a large scale as a part of their farmlands. In the KORYO Dynasty, where national economic foundation was based upon the lands, the disorder of the land system threatened the fall of the Dynasty and so the land reform carried out by General YI SEONG-GYE had led to the creation of ensuing YI Dynasty. All systems of the YI Dynasty were substantially adopted from those of the KORYO Dynasty and thereby KWA JEON System was enforced under the principle of land-nationalization, while the occupancy or the forest land was strictly prohibited, except the national or royal uses, by the forbidden item in KYEONG JE YUK JEON SOK JEON, one of codes provided by the successive kings in the YI Dynasty. Thus the basis of the forest land system through the YI Dynasty had been established, while the private forest area possessed by influential persons since the previous KORYO Dynasty was preserved continuously under the influence of their authorities. Therefore, this principle of the prohibition was nothing but a legal fiction for the security of sovereign powers. Consequently the private occupancy of the forest area was gradually enlarged and finally toward the end of YI Dynasty the privately possessed forest lands were to be officially authorized. The forest administration systems in the YI Dynasty are summarized as follows: a) KEUM SAN and BONG SAN. Under the principle of land-nationalization by a powerful centralism KWA JEON System was established at the beginning of the YI Dynasty and its government expropriated all the forests and prohibited strictly the private occupation. In order to maintain the dignity of the royal capital, the forests surounding capital areas were instituted as KEUM SAN (the reserved forests) and the well-stocked natural forest lands were chosen throughout the nation by the government as BONG SAN(national forests for timber production), where the government nominated SAN JIK(forest rangers) and gave them duties to protect and afforest the forests. This forest reservation system exacted statute labors from the people of mountainious districts and yet their commons of the forest were restricted rigidly. This consequently aroused their strong aversion against such forest reservation, therefore those forest lands were radically spoiled by them. To settle this difficult problem successive kings emphasized the preservation of the forests repeatedly, and in KYEONG KUK DAI JOEN, the written constitution of the YI Dynasty, a regulation for the forest preservation was provided but the desired results could not be obtained. Subsequently the split of bureaucrats with incessant feuds among politicians and scholars weakened the centralism and moreover, the foreign invasions since 1592 made the national land devasted and the rural communities impoverished. It happned that many wandering peasants from rural areas moved into the deep forest lands, where they cultivated burnt fields recklessly in the reserved forest resulting in the severe damage of the national forests. And it was inevitable for the government to increase the number of BONG SAN in order to solve the problem of the timber shortage. The increase of its number accelerated illegal and reckless cutting inevitably by the people living mountainuos districts and so the government issued excessive laws and ordinances to reserve the forests. In the middle of the 18th century the severe feuds among the politicians being brought under control, the excessive laws and ordinances were put in good order and the political situation became temporarily stabilized. But in spite of those endeavors evil habitudes of forest devastation, which had been inveterate since the KORYO Dynasty, continued to become greater in degree. After the conclusion of "the Treaty of KANG WHA with Japan" in 1876 western administration system began to be adopted, and thereafter through the promulgation of the Forest Law in 1908 the Imperial Forests were separated from the National Forests and the modern forest ownership system was fixed. b) KANG MU JANG. After the reorganization of the military system, attaching importance to the Royal Guard Corps, the founder of the YI Dynasty, TAI JO (1392 to 1398 A.D.) instituted the royal preserves-KANG MU JANG-to attain the purposes for military training and royal hunting, prohibiting strictly private hunting, felling and clearing by the rural inhabitants. Moreover, the tyrant, YEON SAN (1495 to 1506 A.D.), expanded widely the preserves at random and strengthened its prohibition, so KANG MU JANG had become the focus of the public antipathy. Since the invasion of Japanese in 1592, however, the innovation of military training methods had to be made because of the changes of arms and tactics, and the royal preserves were laid aside consequently and finally they had become the private forests of influential persons since 17th century. c) Forests for official use. All the forests for official use occupied by government officies since the KORYO Dynasty were expropriated by the YI Dynasty in 1392, and afterwards the forests were allotted on a fixed standard area to the government officies in need of firewoods, and as the forest resources became exhausted due to the depredated forest yield, each office gradually enlarged the allotted area. In the 17th century the national land had been almost devastated by the Japanese invasion and therefore each office was in the difficulty with severe deficit in revenue, thereafter waste lands and forest lands were allotted to government offices inorder to promote the land clearing and the increase in the collections of taxes. And an abuse of wide occupation of the forests by them was derived and there appeared a cause of disorder in the forest land system. So a provision prohibiting to allot the forests newly official use was enacted in 1672, nevertheless the government offices were trying to enlarge their occupied area by encroaching the boundary and this abuse continued up to the end of the YI Dynasty. d) Private forests. The government, at the bigninning of the YI Dynasty, expropriated the forests all over the country under the principle of prohibition of private occupancy of forest lands except for the national uses, while it could not expropriate completely all of the forest lands privately occupied and inherited successively by bureaucrats, and even local governors could not control them because of their strong influences. Accordingly the King, TAI JONG (1401 to 1418 A.D.), legislated the prohibition of private forest occupancy in his code, KYEONG JE YUK JEON (1413), and furthermore he repeatedly emphasized to observe the law. But The private occupancy of forest lands was not yet ceased up at the age of the King, SE JO (1455 to 1468 A.D.), so he prescribed the provision in KYEONG KUK DAI JEON (1474), an immutable law as a written constitution in the YI Dynasty: "Anyone who privately occupy the forest land shall be inflicted 80 floggings" and he prohibited the private possession of forest area even by princes and princesses. But, it seemed to be almost impossible for only one provsion in a code to obstruct the historical growing tendecy of private forest occupancy, for example, the King, SEONG JONG (1470 to 1494 A.D.), himself granted the forests to his royal families in defiance of the prohibition and thereafter such precedents were successively expanded, and besides, taking advantage of these facts, the influential persons openly acquired their private forest lands. After tyrannical rule of the King, YEON SAN (1945 to 1506 A.D.), the political disorder due to the splits to bureaucrats with successional feuds and the usurpations of thrones accelerated the private forest occupancy in all parts of the country, thus the forbidden clause on the private forest occupancy in the law had become merely a legal fiction since the establishment of the Dynasty. As above mentioned, after the invasion of Japanese in 1592, the courts of princes (KUNG BANGG) fell into the financial difficulties, and successive kings transferred the right of tax collection from fisherys and saltfarms to each KUNG BANG and at the same time they allotted the forest areas in attempt to promote the clearing. Availing themselves of this opportunity, royal families and bureaucrats intended to occupy the forests on large scale. Besides a privilege of free selection of grave yard, which had been conventionalized from the era of the KORYO Dynasty, created an abuse of occuping too wide area for grave yards in any forest at their random, so the King, TAI JONG, restricted the area of grave yard and homestead of each family. Under the policy of suppresion of Buddhism in the YI Dynasty a privilege of taxexemption for Buddhist temples was deprived and temple forests had to follow the same course as private forests did. In the middle of 18th century the King, YEONG JO (1725 to 1776 A.D.), took an impartial policy for political parties and promoted the spirit of observing laws by putting royal orders and regulations in good order excessively issued before, thus the confused political situation was saved, meanwhile the government officially permittd the private forest ownership which substantially had already been permitted tacitly and at the same time the private afforestation areas around the grave yards was authorized as private forests at least within YONG HO (a boundary of grave yard). Consequently by the enforcement of above mentioned policies the forbidden clause of private forest ownership which had been a basic principle of forest system in the YI Dynasty entireely remained as only a historical document. Under the rule of the King, SUN JO (1801 to 1834 A.D.), the political situation again got into confusion and as the result of the exploitation from farmers by bureaucrats, the extremely impoverished rural communities created successively wandering peasants who cleared burnt fields and deforested recklessly. In this way the devastation of forests come to the peak regardless of being private forests or national forests, moreover, the influential persons extorted private forests or reserved forests and their expansion of grave yards became also excessive. In 1894 a regulation was issued that the extorted private forests shall be returned to the initial propriators and besides taking wide area of the grave yards was prohibited. And after a reform of the administrative structure following western style, a modern forest possession system was prepared in 1908 by the forest law including a regulation of the return system of forest land ownership. At this point a forbidden clause of private occupancy of forest land got abolished which had been kept even in fictitious state since the foundation of the YI Dynasty. e) Common forests. As above mentioned, the forest system in the YI Dynasty was on the ground of public ownership principle but there was a high restriction to the forest profits of farmers according to the progressive private possession of forest area. And the farmers realized the necessity of possessing common forest. They organized village associations, SONGE or KEUM SONGE, to take the ownerless forests remained around the village as the common forest in opposition to influential persons and on the other hand, they prepared the self-punishment system for the common management of their forests. They made a contribution to the forest protection by preserving the common forests in the late YI Dynasty. It is generally known that the absolute monarchy expr opriates the widespread common forests all over the country in the process of chainging from thefeudal society to the capitalistic one. At this turning point in Korea, Japanese colonialists made public that the ratio of national and private forest lands was 8 to 2 in the late YI Dynasty, but this was merely a distorted statistics with the intention of rationalizing of their dispossession of forests from Korean owners, and they took advantage of dead forbidden clause on the private occupancy of forests for their colonization. They were pretending as if all forests had been in ownerless state, but, in truth, almost all the forest lands in the late YI Dynasty except national forests were in the state of private ownership or private occupancy regardless of their lawfulness.

  • PDF