• Title/Summary/Keyword: FACTS control

Search Result 311, Processing Time 0.026 seconds

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Installation of MFC(Multiple FACTS Coordinated control) On-line System for the Spinning Reserve of a Reactive Power in Metropolitan Area (수도권 순동 무효전력 확보를 위한 FACTS 협조제어 시스템 온라인 설치)

  • Chang, Byung-Hoon;Moon, Seung-Pil;Ha, Yong-Gu;Jeon, Woong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2131-2134
    • /
    • 2010
  • In this paper, the on-line system schemes for coordinated control system of multiple FACTS were presented to enhance the voltage stability around the metropolitan areas. In order to coordinated control system of FACTS devices, MFC on-line system calculates the optimal set point(Vref, Qrev) of FACTS devices using the coordinated control algorithm with real time network data which is transferred from SCADA/EMS system. If the system is unstable after contingencies, the new operation set-point of FACTS would be determined using bus sensitivity from tangent vector at voltage instability point. Otherwise, we would determine the new operation set-point of FACTS for considering economical operation, like as active power loss minimization using Optimal Power Flow algorithm. As the test, MFC(Multiple FACTS Coordinated control) on-line system will be installed in Korea power system.

A Study on the Enhancement of Available Transfer Capability Using the Flexible AC Transmission System (FACTS)

  • Gim, Jae-Hyeon;Kim, Yang-Il;Jeung, Sung-Won
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.192-200
    • /
    • 2004
  • This paper evaluates FACTS control on the available transfer capability (ATC) enhancement. Technical merits of FACTS technology on boosting ATC are analyzed. More effective control means for line flow and bus voltage require the application of FACTS. In this paper, the power flow calculation method for the power systems with FACTS is based on the current injection model (CIM) and the Newton-Raphson method. An integrated scheme for ATC calculation, which considers the dynamic characteristic of the power system, is suggested. The study is applied to the IEEE 57-bus power system to demonstrate the effectiveness of FACTS control on ATC enhancement.

UPFC Control for Power System Damping Reduction (계통동요 제어를 위한 UPFC제어기)

  • Yoon, Jong-Su;Yoon, Yong-Beum;Moon, Gun-Woo;Yoon, Seok-Ho;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.256-258
    • /
    • 1998
  • This paper presents a control system design for the UPFC of FACTS devices by optimal control scheme to enhance small-signal stability in the Power system. The feature of this UPFC controller is coordinated with generator exciter controller(AVR, PSS) to improve the total Power system stability and performance.

  • PDF

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

Development of Cooperated Control System for Multiple FACTS in KEPCO Power Systems (다기의 FACTS 기기 협조제어 시스템 개발)

  • Chang, Byung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1726-1730
    • /
    • 2008
  • In this paper, the application schemes for coordinated control system of multiple FACTS were presented to enhance the voltage stability around the metropolitan areas. In order to coordinated control of FACTS devices, f-V analysis method which is one of the indices for voltage stability was performed with real time network data which is transferred from SCADA/EMS system. If the system is unstable after contingencies, the new operation set-point of FACTS would be determined using bus sensitivity from tangent vector at voltage instability point. Otherwise, we would determine the new operation set-point of FACTS for considering economical operation, like as active power loss minimization using Optimal Power Flow algorithm. In simulation, the SCADA/EMS 2007's data are used for studying the coordinated control algorithm of multiple FACTS devices that is installed or will be installed in KOREA power system

A Study on Enhancement Available Transfer Capability Using Flexible AC Transmission System (FACTS) (FACTS를 이용한 지역간 융통전력 증대방안에 관한 연구)

  • 김양일;정성원;기경현;김재현
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.446-453
    • /
    • 2004
  • This paper focuses on the evaluation of FACTS control on available transfer capability(ATC) enhancement. Technical merit of FACTS technology on ATC boosting are analyzed. More effective control means for line flow and bus voltage are required for appling FACTS. In this paper, the power flow calculation method for deriving FACTS control parameters based on current injection model(CIM) and newton method. Integrated scheme for ATC calculation considering dynamic characteristic of power system is suggested. Study is based on the IEEE 57-bus system demonstrate the effectiveness of FACTS control on ATC enhancement.

Design of Nonlinear FACTS Controller with intelligent Algorithm (FACTS 비선형 지능 제어기 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.33-35
    • /
    • 2000
  • We propose a intelligent controller for FACTS(Flexible AC Transmission System) device to stabilize a power system. In order to identify the nonlinear characteristics of the power system and to estimate a control signal, an artificial neural network is utilized. The control signal which is provided for FACTS device installed in the network is produced. The proposed controller is applied to Unified Power Flow Controller(UPFC) to verified the effectiveness of the proposed control system. The results show that the proposed nonlinear FACTS controller is able to enhance the transient stability of three machine nine bus power system.

  • PDF

An Algorithm for BITC Evaluation considering the Power Control Characteristics of FACTS Devices (FACTS기기의 유효전력 제어특성을 고려한 모선간 송전용량 평가 알고리즘)

  • Yoon, Yong-Beum;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.113-118
    • /
    • 1999
  • In this, sensitivity based approach to estimate BITC(bilateral interchange transfer capacity) considering the real power flow control function of FACTS devices is presented. The real power flow setting of the FACTS devices is adjusted so that it transfers the power flow from the first violation point of transmission capacity to other transmission lines in the power system, thus allowing more power to be transferred from the specified generator bus to the specified load bus. The transfer between the two bus locations is increased from this new operating condition until a violation of transmission capacity limits occurs or until the setting of the FACTS devices can no longer be adjusted. The proposed algorithm is illustrated using examples of small and real life power system.

  • PDF

A Comprehensive Survey of Optimal Placement and Coordinated Control Techniques of FACTS Controllers in Multi-Machine Power System Environments

  • Singh, Bindeshwar;Sharma, N.K.;Tiwari, A.N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.79-102
    • /
    • 2010
  • This paper presents exhaustive review of various methods/techniques for coordinated control between FACTS controllers in multi-machine power systems. It also reviews various techniques/methods for optimal choice and allocation of FACTS controllers. Authors strongly believe that this survey article will be very much useful to the researchers for finding out the relevant references in the field of placement and coordination of FACTS Controllers.