• Title/Summary/Keyword: FA-50 전투기

Search Result 3, Processing Time 0.02 seconds

Implementation of Vertigo Warning function for FA-50 aircraft

  • You, Eun-Kyung;Kim, Hyeock-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.1-9
    • /
    • 2019
  • Fighter pilots are taking 'Advanced Pilot Training' courses to perform their missions perfectly even under adverse conditions. However, there are accidents that fall due to problems with the human body's equilibrium in the acceleration of flight, falling into the 'Vertigo, Spatial disorientation' phenomenon. As such, accidents that fighters fall due to spatial disorientation frequently occur not only in Korea but also abroad. In this study, we implemented the 'Vertigo' warning function in the fighter. First, we analyzed the aircraft's mission computer and the currently implemented warning functions. And we studied the coordinate system to utilize the aircraft attitude information. Based on this, we wanted to provide a visual warning to the HUD when the fighter flies over a certain time in the inverted flight position. Implementing this feature is expected to improve pilot flight safety. In addition, based on the results of this study, we propose a method to implement warning functions through linkage with other subsystems.

A Study on the Interoperability of ROK Air Force Virtual and Constructive Simulation (공군 전투기 시뮬레이터와 워게임 모델의 V-C 연동에 대한 연구)

  • Kim, Yong Hwan;Song, Yong Seung;Kim, Chang Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • LVC(Live-Virtual-Constructive) training system is drawing attention due to changes in battlefield situation and the development of advanced information and communication technologies. The ROKAF(Republic of Korea Air Force) plans to construct LVC training system capable of scientific training. This paper analyzes the results of V-C interoperability test with three fighter simulators as virtual systems and a theater-level wargame model as a constructive system. The F-15K, KF-16, and FA-50 fighter simulators, which have different interoperable methods, were converted into a standard for simulation interoperability. Using the integrated field environment simulator, the fighter simulators established a mutually interoperable environment. In addition, the Changgong model, which is the representative training model of the Air Force, was converted to the standard for simulation interoperability, and the integrated model was implemented with optimized interoperability performance. Throughput experiments, It was confirmed that the fighter simulators and the war game model of the ROKAF could be interoperable with each other. The results of this study are expected to be a good reference for the future study of the ROKAF LVC training system.

Implementation of JDAM virtual training function using machine learning

  • You, Eun-Kyung;Bae, Chan-Gyu;Kim, Hyeock-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.9-16
    • /
    • 2020
  • The TA-50 aircraft is conducting simulated training on various situations, including air-to-air and air-to-ground fire training, in preparation for air warfare. It is also used for pilot training before actual deployment. However, the TA-50 does not have the ability to operate smart weapon forces, limiting training. Therefore, the purpose of this study is to implement the TA-50 aircraft to enable virtual training of one of the smart weapons, the Point Direct Attack Munition (JDAM). First, JDAM functions implemented in FA-50 aircraft, a model similar to TA-50 aircraft, were analyzed. In addition, since functions implemented in FA-50 aircraft cannot be directly utilized by source code, algorithms were extracted using machine learning techniques(TensorFlow). The implementation of this function is expected to enable realistic training without actually having to be armed. Finally, based on the results of this study, we would like to propose ways to supplement the limitations of the research so that it can be implemented in the same way as it is.