• Title/Summary/Keyword: F. solani

Search Result 181, Processing Time 0.024 seconds

Occurrence of Stem and Fruit Rot of Paprika Caused by Nectria haematococca

  • Jee, Hyeong-Jin;Ryu, Kyung-Yeol;Shim, Chang-Ki;Nam, Ki-Woong
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.317-321
    • /
    • 2005
  • Since 2000 severe rots on aerial and underground parts of paprika (Capsicum annum L.) has occurred in most surveyed glasshouses throughout the country. A total of 56 isolates of a fungus were consistently isolated from various plant parts such as fruit, stem, branch, and root collected from 16 farms in five provinces. Anamorph stage of the fungus was identified as Fusarium solani based on its morphological characteristics. However, the fungus readily produced a sexual structure of perithecia on infected plant tissues and on agar media. Since the fungus formed abundant perithecium by a single isolate, it was considered as a homothallic strain of Nectria haematococca, the teleomorph of F. solani. Irregularly globose perithecia with orange to red color formed sparsely to gregariously on dead tissues of fruits and basal stems at the late infection stage, which is a diagnostic sign for the disease. Perithecia ranged from 125 to 220 ${\mu}m$ in diameter varied among isolates. Asci enveloping eight ascospores were cylindrical and measured 60-80x8-12 ${\mu}m$. Ellipsoid to obovate ascospores are two-celled and measured 11-18x4-7 ${\mu}m$. Ascospores were hyaline, slightly constricted at the central septum, and revealed longitudinal striations that is characteristic of the species. This fungus that has never been reported in Korea has previously become a threat to paprika cultivation because of its strong pathogenicity and nationwide distribution.

New Sources of Resistance and Identification of DNA Marker Loci for Sheath Blight Disease Caused by Rhizoctonia solani Kuhn, in Rice

  • Pachai, Poonguzhali;Ashish, Chauhan;Abinash, Kar;Shivaji, Lavale;Spurthi N., Nayak;S.K., Prashanthi
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.572-582
    • /
    • 2022
  • Sheath blight disease caused by the necrotrophic, soilborne pathogen Rhizoctonia solani Kuhn, is the global threat to rice production. Lack of reliable stable resistance sources in rice germplasm pool for sheath blight has made resistance breeding a very difficult task. In the current study, 101 rice landraces were screened against R. solani under artificial epiphytotics and identified six moderately resistant landraces, Jigguvaratiga, Honasu, Jeer Sali, Jeeraga-2, BiliKagga, and Medini Sannabatta with relative lesion height (RLH) range of 21-30%. Landrace Jigguvaratiga with consistent and better level of resistance (21% RLH) than resistant check Tetep (RLH 28%) was used to develop mapping population. DNA markers associated with ShB resistance were identified in F2 mapping population developed from Jigguvaratiga × BPT5204 (susceptible variety) using bulk segregant analysis. Among 56 parental polymorphic markers, RM5556, RM6208, and RM7 were polymorphic between the bulks. Single marker analysis indicated the significant association of ShB with RM5556 and RM6208 with phenotypic variance (R2) of 28.29 and 20.06%, respectively. Co-segregation analysis confirmed the strong association of RM5556 and RM6208 located on chromosome 8 for ShB trait. This is the first report on association of RM6208 marker for ShB resistance. In silico analysis revealed that RM6208 loci resides the stearoyl ACP desaturases protein, which is involved in defense mechanism against plant pathogens. RM5556 loci resides a protein, with unknown function. The putative candidate genes or quantitative trait locus harbouring at the marker interval of RM5556 and RM6208 can be further used to develop ShB resistant varieties using molecular breeding approaches.

Screening of Antifungal Activity on the Coastal Plants 5 Species (해안식물 5종에 대한 항균활성 탐색)

  • Kwon, Nan-Hee;Kim, Tae-Keun;Park, Sung-Jun;Kim, Hyoun-Chol;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.465-484
    • /
    • 2016
  • This study evaluated the antifungal activity of varying concentrations of water-soluble extracts from native plants (Vitex rotundifolia, Tetragonia tetragonoides, Artemisia capillaris, Hibiscus hamabo and Ficus carica) against Stemphylium vesicarium, Penicillium italicum, Sclerotinia sclerotiorum, Pythium ultimum, Botrytis cinerea, Rhizoctonia solani and Colletotrichum gloeosporioides. Mycelium growth of pathogenic bacteria generally decreased in a concentration-dependent manner following treatment with the water extracts from donor plants. Closer analyses indicate varying inhibitory capacities depending on the type of donor plant and pathogenic bacteria. Specifically, mycelium growth of S. vesicarium varied depending on the concentration of the water extracts from T. tetragonoides (r = -0.857, p<0.01) and A. capillarys (r = -0.868, p<0.01). Also, P. italicum and V. rotundifolia (r = -0.833, p<0.01), S. sclerotiorum and V. rotundifolia (r = -0.862, p<0.01), A. capillaris (r = -0.902, p<0.01), B. cinerea and T. tetragonoides (r = -0.896, p<0.01) showed an inverse relationship. The rate of mycelial growth inhibition of pathogenic bacteria analysed are as follows: P. ultimum 94%, B. cinerea 50%, C. gloeosporioides 80% in 100% treatment of T. teragonoides. A. capillaris inhibited S. vesicarium by 43%, P. ultimum by 90%; H. hamabo inhibited P. italicum by 50%, S. sclerotiorum by 26%, and F. carica inhibited R. solani by 74%. Total phenol content with antifungal activities are as follows: A. capillaris 16.15 mg/g, F. carica 7.81 mg/g, V. rotundifolia 6.18 mg/g, H. hamabo 5.25 mg/g, T. tetragonoides 4.41 mg/g, and total flavonoid content is as follows: A. capillaris 27.57 mg/g, V. rotundifolia 12.49 mg/g, F. carica 11.45 mg/g, H. hamabo 5.77 mg/g, T. tetragonoides 5.08 mg/g.

Effects of Beneficial Microorganisms and Mycorrhizal Fungus Colonized Rhizoplane on the Suppression of Root Rot Pathogen, Fusarium solani (근면 정착 유용 미생물과 균근균이 근부병원균, Fusarium solani의 발병억제에 미치는 영향)

  • Han, Ki-Don;Lee, Sang-Sun;Kim, Sung-Ho;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.38-48
    • /
    • 1996
  • The survival or colonization of beneficial organsisms and suppression of root rot of ginseng (Panax ginseng) by two distinct bacteria, Pseudomonas cepacia, Bacillus cereus and three mycorrhiza in pot soil were investigated and compared with uninoculated root. In separate inoculation, colonization of roots by P. cepacia was maintained at 6.25 (log cfu/g root) during growth for 10 days under pot culture conditions comparing to $5.62{\sim}6.19$ by mixed treatment with other organisms. Colonizations of P. cepacia were gradually decreased from 6.25 (log cfu/g root) in 10 days growth to 3.01 (log cfu/g root) in 270 days incubation period. This reduction was also investgated in combination treatments by B. cereus or F. solani. The numbers of Fusarium spp. were colonized high number in rhizosphere soil from 3.33 to 3.67 (log cfu/g root) in control within $10{\sim}60$days after treatment of pathogen F. solani, but it's numbers were markedly decreased in 270 days cultivation of plant from 3.33 to 1.02 (log cfu/g root) after treatment. In treatment of beneficial strains of P. cepacia and B. cereus, P. cepacia significantly suppressed the development of root rot from 4.3 in control to 1.2 in treatment, whereas B. cereus alone had no effect on the rate of disease suppression. The disease index $(1.8{\sim}2.3)$ in combination of two bacteria was reduced in plants inoculated with both P. cepacia and B. cereus comparing to the index (4.3) of control. As an effect of inoculation with mycorrhiza on disease suppression, suppression of root rot by F. solani was reduced to $1.2{\sim}1.6$ in disease index in treatment of Glomus albidum and Acaulospora longular comparing to 4.3 of control. In the treatment of bacterial strain P. cepacia and mycorrhizal fungus Glomus albidum, the disease suppression was apparent to 1.2 and 1.2 comparing to 4.3 of control in disease index respectively.

  • PDF

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

생물방제균 Bfacillus subtilis YB-70의 외부 Urease 유전자 도입과 길항력 증강

  • Choi, Jong-Kyu;Kim, Yong-Su;Lee, Eun-Tag;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 1997
  • To genetically breed powerful multifunctional antagonistic bacteria, the urease gene of alkalophilic Bacillus pasteurii was transferred into Bacillus subtilis YB-70 which had been selected as a powerful biocontrol agent against root-rotting fungus Fusarium solani. Urease gene was inserted into the HindIII site of pGB215-110 and designated pGU266. The plasmid pGU266 containing urease gene was introduced into the B. subtilis YB-70 by alkali cation transformation system and the urease gene was very stably expressed in the transformant of B. subtilis YB-70(pGU266). The optimal conditions for the transfomation were also evaluated. From the in vitro antibiosis tests against F. solani, the antifungal activity of B. subtilis YB-70 containing urease gene was much efficient than that of the non-transformed strain. Genetic improvement of B. subtilis YB-70 by transfer of urease gene for the efficient control seemed to be responsible for enhanced plant growth and biocontrol efficacy by combining its astibiotic action and ammonia producing ability.

  • PDF

Incidence and Intensity of Root Disease Complex due to Nematode and Soilborne Fungal Pathogens in Mulberry (Morus alba L.)

  • Naik, Vorkady Nishitha;Sharma, Dinesh Dutta;Govindaiah, Govindaiah
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • A preliminary survey on the incidence and intensity of root disease complex (association of Meloidogyne incognita and root rot pathogens) was carried out in the sericultural areas of Karnataka. A total of 280 mulberry gardens were surveyed in 14 districts of Karnataka belonging to different types of soil (red sandy, red loamy and black cotton), farming systems (irrigated and rainfed), varieties (V-1, K-2, Local and S-13) and age of the plants (0-5, 5-10 and 10-15 years). It was observed that the association of M. incognita with Botryodiplodia theobromae and Fusarium solani causes the root disease complex in mulberry. Of the 280 gardens visited, 94 were infested with the disease complex and incidence was recorded as 33.6%. The higher intensity of root disease complex was observed when the root system had more than 100 galls/plant with infection of mixed population of B. theobromae and F. solani in sandy soil under irrigated farming. The 5-10 years old mulberry plantation with V-I variety was found to be most susceptible to root disease complex. Districts like Mysore, Kolar, Mandya, Tumkur, Chitradurga and Bangalore were observed as sensitive areas. Further, the wounds caused by M. incognita in mulberry roots favour the easy entry of root rot pathogens, which increased the severity of the disease very fast.

Isolation and Characterization of Acinetobacter sp. WC-17 Producing Chitinase

  • SOON-DUCK HONG;SHIN, WOO-CHANG;DONG-SUN LEE;TAE-HO KIM;JU-HYUNG WOO;JIN-MAN LEE;JONG-GUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.80-86
    • /
    • 1995
  • The bacterial strain WC-17 able to produce chitinase was isolated from soil using an enrichment technique. The isolated strain was identified as Acinetobacter sp. judging by their morphological and physiological characterisitics. The optimal culture conditions for the production of chitinase of Acinetobacter sp. WC -17 are 1.5% colloidal chitin and 1 % tryptone at $30^{\circ}C$ with pH 6.5. Since the enzyme was rapidly produced in a culture supplied with chitin, glucose, or N-acetylglucosamine but not with other polymers and monosaccharide, the enzyme was considered to be an inducible enzyme. Notably N- acetylglucosamine and glucose were found to be effective inducers at low concentrations but repressors at excessive concentrations. The cultural supernatant of Acinetobacter sp. WC-17 inhibited the growth of phytopathogenic fungi such as P.oryzae, R.solani, and F.solani. Among the phytopathogenic fungi tested, P.oryzae was the most sensitive. The conventional agar plate (PDA containing 1 % colloidal chitin) method also produced the same result.

  • PDF

Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases

  • Shim, Sang-Hee;Jo, Su-Jung;Kim, Jin-Cheol;Choi, Gyung-Ja
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.280-285
    • /
    • 2010
  • In the course of a searching natural antifungal compounds from plant sources, we found that the methanol extract ($3,000\;{\mu}g/ml$) of Malus domestica fruits had potential of control against rice blast (Magnaporthe grisea) and tomato late blight (Phytophthora infestans). Under bioassay-guided purification, we isolated phloretin, a phenolic compound, with in vivo antifungal activity against M. grisea. By 1-day protective application of phloretin ($500\;{\mu}g/ml$), the compound strongly inhibited the disease development of M. grisea and P. infestans on rice and tomato seedlings, respectively. And red pepper anthracnose caused by Colletotrichum coccodes also was moderately suppressed. However, rice sheath blight (Rhizoctonia solani AG1), and barley powdery mildew (Blumeria graminis f. sp. hordei) were hardly controlled. In addition, the compound showed in vitro antifungal activity against some plant pathogenic fungi including Phytophthora capsici, Alternaria panax, Sclerotinia sclerotiorum, R. solani AG4, and M. grisea. This is the first report on the antifungal activity of phloretin against plant pathogenic fungi.

The Outbreak and Propagule formation of black root rot caused by Calonectria crotalariae in Korea (콩 흑색뿌리썩음병의 발생과 Propagule의 형성)

  • Sung J.M.;Park J.H.;Lee S.C.;Chung B.K.
    • Korean journal of applied entomology
    • /
    • v.19 no.4 s.45
    • /
    • pp.228-233
    • /
    • 1980
  • The infection rate of soybean black root rot disease caused by Calonectria crotalariae was about $14\%$. The isolated fungi from the infected soybean roots and stems were Calonectria crotalariae, Fusarium solani, F. roseum, Phomopsis sojae, Pythium aphanidermatum, Rhizoctonia solani and Macrophomina sp. Among them, C. crotalariae was the most virulent pathogen under the laboratory conditions. Mycelial growth and microsclerotial formation were good on PSA containing 1000cc of water, 100g of potato and 20g of sugar. Mycelial growth, sporulation and microsclerotial formation were good on sterilized root. Perithecial formation was better in the dark condition than in the light. Survival of macroconidia was not available between $0\~25\%$ soil water content. Microsclerotia and mycelium in infected plant debris were survived for 4 months at to $8\%\;50\%$ soil water content. The plant height, when inoculated with $1.2\%$ inoculum density, reached approximately half of uninoculated plants. Disease severity was much higher at nonsterilized soil than completely sterilized soil. It was determined that the host range of this pathogen includes soybean, peanut, green bean and red bean.

  • PDF