• Title/Summary/Keyword: F-Waves

Search Result 158, Processing Time 0.02 seconds

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

The Design of Parameters to Improve Actuating Performance in High Frequency Vibro-Hammer(HFVH) and the Study of Characteristic Propagation and Attenuation of Piling Vibration (초고주파 진동항타기의 구동 성능향상을 위한 파라미터 설계 및 항타진동의 전달과 감쇠특성에 관한 연구)

  • Jang, Tae-In;Park, Joon-Hyuk;Baek, Yoon-Su;Kim, Sung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.763-773
    • /
    • 2004
  • This paper suggests the 2 D.O.F mathematical model of the High Frequency Vibro-Hammer (HFVH), introduces an experimental method for measuring of the attenuation of piling vibration and proves what experiments are coincident with the equation of wave propagation. As vibratory installation of piles and casings has many economic merits in the construction field, most of all contractors prefer to vibratory pile driving method than the other. Compared to impact pile driving, vibratory installation has the advantage of reducing vibration or noise pollution and can drive piles under high frequency. Experiments serve estimations of capabilities and limitations of the HFVH's excitation force and finding of sensitivity for important soil resistance parameters. Also, we discuss the HFVH that can drive with three kinds of input waves (triangular, sine and square wave) and propose the design of parameters to improve actuating performance in it.

On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

  • Hwang, Seungtae;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Aeroacoustic computation of a fully-developed turbulent pipe flow at $Re_{\tau}=175$ and M = 0.1 is conducted by LES/LPCE hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent channel flow at $Re_{\tau}=175$. A constant decaying rate of the acoustic power spectrum, $f^{-8/5}$ is found to be related to the turbulent bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive noise at ${\omega}^+$ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures ($k_zR$ < 1.5).

Three Branches Vertical Hall Sensor for Rotation Angle Detection (회전각 검출용 3축 수직 Hall 센서)

  • Lee, Ji-Yeon;Nam, Tae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.840-845
    • /
    • 2005
  • A three branches vortical Hall sensor for detecting rotation angle of brushless motor has fabricated. The sensor is constructed three branches of $150{\mu}m$ width and $300{\mu}m$ distance from central electrode to Hall electrode. Each branch has one Hall output and one Hall input. The central electrode acts as common driving input. According to rotation angle change of brushless motor, sensor gives three position signals phase shifted by $120^{\circ}$. The sensitivity of sensor is 200V/A$\cdot$T at magnetic field of 0.1 T and constant driving current of 1mA. It has also showed three sine waves of Hall output voltages with $120^{\circ}$ phase over one motor rotation. The noise can limit sensor's resolution. We have measured sensor's noise characteristics. The detectable minimum magnetic field is $20{\mu}T$ at driving current 1mA, measured frequency 1 kHz and bandwidth$({\Delta}f)$ of 1Hz.

Numerical Analysis for Conductance Probes, for the Measurement of Liquid Film Thickness in Two-Phase Flow

  • No, Hee-Cheon;F. Mayinger
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.450-455
    • /
    • 1995
  • A three-dimensional numerical tool is developed to calculate the potential distribution, electric field, and conductance for any types of conductance probes immersed in the wavy liquid film with various shapes of its free surface. The tool is validated against various analytical solutions. It is applied to find out the characteristics of the wire-wire probe, the flush-wire probe and the flush-flush probe in terms of resolution, linearity, and sensitivity. The wire-wire probe shows high resolution and excellent linearity for various film thickness, but comparably low sensitivity for low film thickness fixed. The flush-wire probe shows good linearity and high sensitivity for varying film thickness, but resolution degrading with an increase in film thickness. In order to check the applicability of the three types of probes in the real situation, the Korteweg-de Vries(KdV) two-dimensional solitary wave is simulated. The wire-wire probe is strongly affected by the installation direction of the two wires; when the wires are installed perpendicularly to the flow direction, the wire-wire probe shows large distortion of the solitary wave. In order to measure the transverse profile of waves, the wire-wire probes and the flush-wire probes are required to be separately installed 2mm and 2mm, respectively.

  • PDF

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

Understanding Recreational Choice Behavior: Application of Theory of Planned Behavior (레크레이션 선택행동의 체계적 이해 : 계측행동이론의 적용으로)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.4
    • /
    • pp.18-29
    • /
    • 1998
  • This study was carried out to test the theory of planned behavior in recreational choices behavior. Lotte World was chosen as study area, and college students were selected by nonprobability sampling for two waves of data collection. The first wave of data were collected one weeks into the spring semester : intention, attitude, subjective norm, and perceived behavioral control were measured. To collect the data of the second wave, the same resondents were asked their behavior, one week data of the second wave, the same respondents were asked their behavior , one week prior to the final examination : whether they visited the Lotte World or not. Polychoric correlation among variables were calculated by the PRELIS because behavior was nominal variable. Then, weighted least square method was utilized to calibrate structural equation model by the LISREL version 7.2. Structural link effect on intention among three determinants : the direct effect on intention was 0.421 and the indirect effect via intention on behavior was 0.145, respectively. However, its effect on behavior was insignificant because actual control over 'visiting of Lotte World' was relatively high. A few comments were sugested on data collection, and inclusion of new variables was discussed for the sufficiency f the theory of planned behavior.

  • PDF

Fast Millimeter-Wave Beam Training with Receive Beamforming

  • Kim, Joongheon;Molisch, Andreas F.
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.512-522
    • /
    • 2014
  • This paper proposes fast millimeter-wave (mm-wave) beam training protocols with receive beamforming. Both IEEE standards and the academic literature have generally considered beam training protocols involving exhaustive search over all possible beam directions for both the beamforming initiator and responder. However, this operation requires a long time (and thus overhead) when the beamwidth is quite narrow such as for mm-wave beams ($1^{\circ}$ in the worst case). To alleviate this problem, we propose two types of adaptive beam training protocols for fixed and adaptive modulation, respectively, which take into account the unique propagation characteristics of millimeter waves. For fixed modulation, the proposed protocol allows for interactive beam training, stopping the search when a local maximum of the power angular spectrum is found that is sufficient to support the chosen modulation/coding scheme. We furthermore suggest approaches to prioritize certain directions determined from the propagation geometry, long-term statistics, etc. For adaptive modulation, the proposed protocol uses iterative multi-level beam training concepts for fast link configuration that provide an exhaustive search with significantly lower complexity. Our simulation results verify that the proposed protocol performs better than traditional exhaustive search in terms of the link configuration speed for mobile wireless service applications.

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

Enhancement of Absorption Performance Due to the Wavy Film of the Vertical Absorber Tube

  • Kim Jung-Kuk;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2006
  • Absorption performance at the vertical interface between refrigerant vapor and liquid solution of $LiBr-H_{2}O$ solution was enhanced by the waves formed due to the interfacial shear stress. The present study investigated experimentally and analytically the improvements of absorption performance in a falling film by wavy film flow. The dynamic parameter was the film Reynolds numbers ranged from 50 to 150. The energy and diffusion equations were solved simultaneously to find the temperature and concentration profiles at the interface of liquid solution and refrigerant vapor. Absorption characteristics due to heat and mass transfer were analyzed for the falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Absorption performance showed a peak value at the solution flow rate of $Re_{f}>100$. Absorption performance for the wavy film flow was found to be greater by approximately 10% than that for uniform film flow. Based on numerical and experimental results, the maximum absorption rate was obtained for the wavy flow caused by spring insert. The difference between the measured and the predicted results were ranged from 5.8 to 12%.