• Title/Summary/Keyword: F-IMEHD

Search Result 4, Processing Time 0.019 seconds

An Adaptive Feedback Canceller for Fully Implantable Hearing Device Using Tympanic Membrane Installed Microphone (고막이식형 마이크로폰을 위한 이식형 인공중이 적응 피드백 제거기 구현)

  • Kim, Tae Yun;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.189-199
    • /
    • 2016
  • Many implantable hearing aids are being developed as alternatives to conventional hearing aids which has inconveniences for use and social stigma that make hearing-impaired people avoid to wear it. Particularly, the fully-implantable middle ear hearing devices (F-IMEHD) are being actively studied for mixed or sensorineural hearing impaired people. In development of F-IMEHD, the most difficult problem is improving the performance of implantable microphone. Recently, Cho et al. have studied the tympanic membrane installed microphone which has better sensitivity and is easier to operate on patient than the microphone implanted under the skin. But, it may cause howling problem due to the feedback signal via oval window and ossicle chain from the transducer on round window in the middle ear cavity, therefore, a feedback canceller is necessary. In this paper, we designed NLMS (normalized least mean square) adaptive feedback canceller for F-IMEHD with tympanic membrane installed microphone and a transducer implemented at round window, and computer simulation was performed to verify its operation. The designed adaptive feedback canceller has a delay filter, a 64 point FIR fixed filter and a 8-tap adaptive FIR filter. Computer simulation of the feedback path is modeled by using the data obtained through human cadaver experiment.

Implementation of Fitting Software for Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 적합 소프트웨어의 구현)

  • Lee, J.W.;Jung, E.S.;Lim, H.K.;Lee, J.H.;Seong, K.W.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • Generally, fully implantable middle ear hearing device (F-IMEHD) is implanted under the skin nearby human temporal bone with all components including implantable microphone and vibration transducer. The microphone and transducer have different characteristic before and after implant. Fitting process is performed for this characteristic change of them and proper performance of hearing aids for each patient. Conventional hearing aids and partially implantable hearing aids, they have wired connector for fitting process. However in case of F-IMEHD, it is difficult this wired connection, because all components of F-IMEHD is implanted. In this paper, fitting software that can be apply wireless fitting hardware for F-IMEHD has been designed and implemented. It can find out proper fitting parameter reflecting characteristics of the microphone and transducer for patients who has difficulty in hearing.

  • PDF

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

Implementation of Wireless Charger with the Function of Auto-Shutdown for fully Implantable Middle Ear Hearing Devices (완전 이식형 인공중이를 위한 자동 충전종료형 무선 충전장치의 구현)

  • Lee, Jang-Woo;Lim, Hyung-Gyu;Jung, Eui-Sung;Han, Ji-Hun;Lee, Seung-Hyun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.539-548
    • /
    • 2007
  • In the paper, a wireless charger with the function of auto-shutdown for fully implantale middle ear hearing devices (F-IMEHD) has been designed. The wireless charger can communicate with an implant module to be turned off automatically shutdown after an internal rechargeable battery has been fully-charged by electromagnetic coupling using two coils. For the communication with an implant module, the wireless charger uses the load shift keying (LSK) method. But, the variation of the mutual inductance due to the different distance between two coils can cause the communication error in receiving the fully-charged signal from an implant module. To solve the problem, the implemented wireless charger has a variable reference generator for LSK communication. The wireless charger generates proper level of the reference voltage for a comparator using an ADC (analog-to-digital converter) and a DAC (digital-to-analog converter). Through the result of experiment, it has been confirmed that the presented wireless charger can detect signals from implantable module. And wireless charger can stop generating electromagnetic flux after an implanted battery has been fully charged in spite of variable coil distance according to different skin thickness.