• 제목/요약/키워드: Eye region detection

검색결과 96건 처리시간 0.031초

다중 얼굴 특징 추적을 이용한 복지형 인터페이스 (Welfare Interface using Multiple Facial Features Tracking)

  • 주진선;신윤희;김은이
    • 대한전자공학회논문지SP
    • /
    • 제45권1호
    • /
    • pp.75-83
    • /
    • 2008
  • 본 논문에서는 얼굴의 다중 특징을 이용하여 마우스의 다양한 동작을 효율적으로 구현할 수 있는 복지형 인터페이스를 제안한다. 제안된 시스템은 5개의 모듈로 구성 된다 : 얼굴의 검출(Face detection), 눈의 검출(eye detection), 입의 검출(mouth detection), 얼굴특징 추적(lariat feature tracking), 마우스의 제어(mouse control). 첫 단계에서는 피부색 모델과 연결 성분 분석을 이용하여 얼굴 영역을 검출한다. 그 후 얼굴영역으로부터 정확히 눈을 검출하기 위하여 신경망 기반의 텍스처 분류기를 사용하여 얼굴 영역에서 눈 영역과 비 눈 영역을 구분한다. 일단 눈 영역이 검출되면 눈의 위치에 기반 하여 에지 검출기(edge detector)를 이용하여 입 영역을 찾는다. 눈 영역과 입 영역을 찾으면 각각 mean shift 알고리즘과 template matching을 사용하여 정확하게 추적되고, 그 결과에 기반 하여 마우스의 움직임 또는 클릭의 기능이 수행된다. 제안된 시스템의 효율성을 검증하기 위하여 제안된 인터페이스 시스템을 다양한 응용분야에 적용 하였다. 장애인과 비장애인으로 나누어 제안된 시스템을 실험한 결과 모두에게 실시간으로 보다 편리하고 친숙한 인터페이스로 활용 될 수 있다는 것이 증명 되었다.

Real-Time Eye Tracking Using IR Stereo Camera for Indoor and Outdoor Environments

  • Lim, Sungsoo;Lee, Daeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3965-3983
    • /
    • 2017
  • We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.

자동차 안전을 위한 히스토그램 이용 졸음 감지 시스템 개발 (Development of a Drowsiness Detection System using a Histogram for Vehicle Safety)

  • 강수민;허경무;주영복
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, we propose a technique of drowsiness detection using a histogram for vehicle safety. The drowsiness of vehicle drivers is often the main cause of many vehicle accidents. Therefore, the checking of eye images in order to detect the drowsiness status of a driver is very important for preventing accidents. In our suggested method, we analyse the changes of a histogram of eye region images which are acquired using a CCD camera. We develop a drowsiness detection system using this histogram change information. The experimental results show that the proposed method enhances the accuracy of detecting drowsiness to nearly 97%, and can be used to prevent accidents due to driver drowsiness.

비젼을 이용한 졸음운전 감지 시스템 (Drowsiness-drive Perception System Using Vision)

  • 주영훈;김진규
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2281-2284
    • /
    • 2008
  • The purpose of this paper is to develope the drowsiness-drive perception system which judges drowsiness driving based on drivers' eye region using single vision system. To do this, first, we use the Haar-like feature and AdaBoost learning algorithm for detecting the features of the face region. And we measure the eye blinking frequency and eye closure duration from these feature data. And then, we propose the drowsiness-drive detection algorithm using the eye blinking frequency and eye closure duration. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.

Harris Corner Detection for Eyes Detection in Facial Images

  • Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.373-376
    • /
    • 2013
  • Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.

  • PDF

눈 주변영역의 명암분포를 이용한 얼굴탐지 (Face Detection using Brightness Distribution in the Surrounding Area of Eye)

  • 황대동;박주철;김계영
    • 정보처리학회논문지B
    • /
    • 제16B권6호
    • /
    • pp.443-450
    • /
    • 2009
  • 본 논문에서는 눈 주변의 명암분포를 사용하여 영상에 존재하는 얼굴을 탐지하는 새로운 기술을 개발한다. 제안하는 얼굴탐지의 기본적인 절차는 얼굴구성요소 후보 추출, 눈과 입의 형태정보를 이용한 얼굴구성요소 후보 필터링, 눈 후보 주변영역의 에지와 명암분포를 인공신경망 에 적용하여 좌/우안 분류, 눈-입 조합을 통한 얼굴후보 추출, 코 영역 에지의 존재 유무를 이용한 얼굴 검증 순이다. 본 논문에서 제안하는 방식은 눈의 주변영역 정보를 인공신경망에 적용하여 좌/우안 정보를 산출하여 얼굴을 탐지하는 것에 중점을 두고 있다. 이 방법은 피부색상을 이용하지 않으므로 다양한 조명환경과 복잡한 배경을 가지는 영상들에 존재하는 얼굴을 탐지할 수 있다. 탐지율 관점에서 기존의 주요 방법들 보다 우수함을 실험을 통하여 보인다.

스마트폰 영상에서의 개선된 실시간 눈동자 검출 방법 (An Enhanced Method for Detecting Iris from Smartphone Images in Real-Time)

  • 김성훈;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권9호
    • /
    • pp.643-650
    • /
    • 2013
  • 본 논문은 스마트폰 영상의 실시간 눈동자 검출에서 허프 원 변환 연산의 연산량 축소를 통한 속도 및 검출율 개선 방법을 제안한다. 눈동자를 검출하기 위해서는 입력 영상에서 얼굴과 눈을 검출하고, 눈 영역의 크기에 따라 눈동자의 크기가 변하는 것을 방지하기 위해 일정크기로 눈 영역을 정규화하며, 다양한 조명환경에서 눈동자가 검출이 가능하도록 히스토그램 평활화를 실시하고, 눈의 양쪽 끝점간의 거리를 구하여 영상에서의 실제 눈동자의 크기를 포함할 수 있는 최소한의 눈동자 크기 범위를 계산하여 허프 원 변환에 적용함으로써 연산량을 최소화 하였다. 제안한 방법을 밝은 조명과 어두운 조명에서 실험한 결과 기존 방법들과 비교하여 눈동자 검출 속도는 40% 이상, 검출율은 14% 이상 향상된 것을 보였다.

살색 정보와 타원 모양 정보를 이용한 얼굴 검출 기법 (A Face Detection Algorithm using Skin Color and Elliptical Shape Information)

  • 강성화;김휘용;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, we present an efficient face detection algorithm for locating vertical views of human faces in complex scenes. The algorithm models the distribution of human skin color in YCbCr color space and find various ace candidate regions. Face candidate regions are found by thresholding with predetermined thresholds. For each of these face candidate regions, The sobel edge operator is used to find edge regions. For each edge region, we used an ellipse detection algorithm which is similar to hough transform to refine the candidate region. Finally if a substantial number of he facial features (eye, mouth) are found successfully in the candidate region, we determine he ace candidate region as a face region. e show empirically that the presented algorithm an find the face region very well in the complex scenes.

  • PDF

출입 통제에 활용 가능한 딥러닝 기반 마스크 착용 판별 (Deep learning based face mask recognition for access control)

  • 이승호
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.395-400
    • /
    • 2020
  • 전 세계적으로 유행하며 수많은 확진자와 사망자를 발생시킨 코로나바이러스-19(COVID-19)는 일상에서 사람 간 전염이 가능하여 국민들을 불안과 공포에 떨게 하고 있다. 감염을 최소화하기 위해서는 건물 출입시 마스크 착용이 필수적이지만 일부 사람들은 여전히 마스크 없이 얼굴을 노출시킨 채 건물에 출입하고 있다. 본 논문에서는 효율적인 출입 통제를 위해 얼굴에 마스크를 착용했는지 여부를 자동으로 판별하는 방법을 제안한다. 제안 방법은 양쪽 눈 영역을 검출하고 눈 위치를 참조하여 마스크 착용 영역(양쪽 눈 아래 얼굴 영역)을 예측한다. 이 때 마스크 착용 영역을 보다 정확히 예측하기 위해 양쪽 눈 위치가 수평이 되도록 얼굴 영역을 회전하여 정렬한다. 정렬된 얼굴 영역에서 추출된 마스크 착용 영역은 이미지 분석에 특화된 딥러닝 기법인 CNN(Convolutional neural network)을 통해 마스크 착용 여부(착용 또는 미착용)를 최종 판별한다. 총 186장의 테스트 이미지에 대해 실험한 결과, 98.4%의 판별 정확도를 보였다.

TV컬러 배경영상에서 얼굴영역 검출 알고리즘 (Algorithm of Face Region Detection in the TV Color Background Image)

  • 이주신
    • 한국항행학회논문지
    • /
    • 제15권4호
    • /
    • pp.672-679
    • /
    • 2011
  • 본 논문에서는 텔레비전 칼라영상에서 사람의 피부색을 기반으로 얼굴영역을 검출하는 방법을 제안하였다. 제안된 방법은 피부색을 샘플링하여 기준영상으로 놓고, 텔레비전 영상의 화소와 기준영상의 화소 사이의 유클리디안(Euclidean) 거리를 이용하여 얼굴후보 영역결정을 하였다. 얼굴 후보영역에서 눈 검출은 RGB 칼라를 CMY칼라 모델로 변환 하여 Y와 C 사이의 색차성분에 대한 평균값과 표준 편차를 이용하여 검출 하였다. 입술 영역은 RGB 칼라모델에서 YIQ 칼라 공간으로 변환 하여 Q 요소로 입술 영상을 검출 하였다. 얼굴영역 검출은 눈 영상과 입술 영상을 논리연산 하여 지식 기반으로 결정 하였다. 제안된 방법의 타당성을 입증하기 위하여 텔레비전 칼라영상에서 입력받은 정면 칼라 영상으로 실험한 결과, 얼굴영역 검출이 얼굴의 위치와 크기에 관계없이 검출됨을 보였다.