• Title/Summary/Keyword: Eye detection

Search Result 430, Processing Time 0.022 seconds

An Effective Retinal Vessel and Landmark Detection Algorithm in RGB images

  • Jung Eun-Hwa
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.27-32
    • /
    • 2006
  • We present an effective algorithm for automatic tracing of retinal vessel structure and vascular landmark extraction of bifurcations and ending points. In this paper we deal with vascular patterns from RGB images for personal identification. Vessel tracing algorithms are of interest in a variety of biometric and medical application such as personal identification, biometrics, and ophthalmic disorders like vessel change detection. However eye surface vasculature tracing in RGB images has many problems which are subject to improper illumination, glare, fade-out, shadow and artifacts arising from reflection, refraction, and dispersion. The proposed algorithm on vascular tracing employs multi-stage processing of ten-layers as followings: Image Acquisition, Image Enhancement by gray scale retinal image enhancement, reducing background artifact and illuminations and removing interlacing minute characteristics of vessels, Vascular Structure Extraction by connecting broken vessels, extracting vascular structure using eight directional information, and extracting retinal vascular structure, and Vascular Landmark Extraction by extracting bifurcations and ending points. The results of automatic retinal vessel extraction using jive different thresholds applied 34 eye images are presented. The results of vasculature tracing algorithm shows that the suggested algorithm can obtain not only robust and accurate vessel tracing but also vascular landmarks according to thresholds.

  • PDF

Efficient Eye Location for Biomedical Imaging using Two-level Classifier Scheme

  • Nam, Mi-Young;Wang, Xi;Rhee, Phill-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.828-835
    • /
    • 2008
  • We present a novel method for eye location by means of a two-level classifier scheme. Locating the eye by machine-inspection of an image or video is an important problem for Computer Vision and is of particular value to applications in biomedical imaging. Our method aims to overcome the significant challenge of an eye-location that is able to maintain high accuracy by disregarding highly variable changes in the environment. A first level of computational analysis processes this image context. This is followed by object detection by means of a two-class discrimination classifier(second algorithmic level).We have tested our eye location system using FERET and BioID database. We compare the performance of two-level classifier with that of non-level classifier, and found it's better performance.

Anti-Spoofing Method for Iris Recognition by Combining the Optical and Textural Features of Human Eye

  • Lee, Eui Chul;Son, Sung Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2424-2441
    • /
    • 2012
  • In this paper, we propose a fake iris detection method that combines the optical and textural features of the human eye. To extract the optical features, we used dual Purkinje images that were generated on the anterior cornea and the posterior lens surfaces based on an analytic model of the human eye's optical structure. To extract the textural features, we measured the amount of change in a given iris pattern (based on wavelet decomposition) with regard to the direction of illumination. This method performs the following two procedures over previous researches. First, in order to obtain the optical and textural features simultaneously, we used five illuminators. Second, in order to improve fake iris detection performance, we used a SVM (Support Vector Machine) to combine the optical and textural features. Through combining the features, problems of single feature based previous works could be solved. Experimental results showed that the EER (Equal Error Rate) was 0.133%.

Real-Time Eye Detection and Tracking Under Various Light Conditions (적외선 조명을 이용한 실시간 눈 검출 및 추적)

  • Cho Hyoun-Seob;Min Jin-Kyoung;Kim Hee-Sook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.187-190
    • /
    • 2005
  • 본 논문에서는 다양한 조명하에서 실시간으로 눈을 검출하고 추적하는 새로운 방법을 제안하고자한다. 기존의 능동적 적외선을 이응한 눈 검출 및 추적 방법은 외부의 조명에 매우 민감하게 반응하는 문제점을 가지고 있으므로, 본 논문에서는 적외선 조명을 이용한 밝은 동공 효과와 전형적인 외형을 기반으로 한 사물 인식 기술을 결합하여 외부 조명의 간섭으로 밝은 동공 효과가 나타나지 않는 경우에도 견실하게 눈을 검출하고 추적 할 수 있는 방법을 제안한다. 눈 검출과 추적을 위해 SVM과 평균이동 추적방법을 사용하였고, 적외선 조명과 카메라를 포함한 영상 획득 장치를 구성하여 제안된 방법이 효율적으로 다양한 조명하에서 눈 검출과 추적을 할 수 있음을 보여 주었다.

  • PDF

Eye Detection Using Zernike Moments and SVM (Zernike 모멘트와 SVM을 이용한 눈 검출)

  • Kim, Hyoung-Joon;Baek, Yeul-Min;Kim, Whoi-Yul
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.285-286
    • /
    • 2007
  • This paper presents a method to detect eyes in the facial image using Zernike moments and SVM After detecting eye candidate regions from the facial image, Zernike moments are computed on those regions with moving a $15{\times}15$ window. Then, SVM that uses Zernike moments as an input vector detects eyes. In the experimental results, the proposed method shows the eye detection rate of about 90%.

  • PDF

Performance Improvement Method of Face Detection Using SVM (SVM을 이용한 얼굴 검출 성능 향상 방법)

  • Jee, Hyung-Keun;Lee, Kyung-Hee;Chung, Yong-Wha
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.13-20
    • /
    • 2004
  • In the real-time automatic face recognition technique, accurate face detection is essential and very important part because it has the effect to face recognition performance. In this paper, we use color information, edge information, and binary information to detect candidate regions of eyes from Input image, and then detect face candidate region using the center point of the detected eyes. We verify both eye candidate region and face candidate region using Support Vector Machines(SVM). It is possible to perform fast and reliable face detection because we can protect false detection through these verification process. From the experimental results, we confirmed the Proposed algorithm in this paper shows excellent face detection rate over 99%.

A Development of Video Monitoring System on Real Time (실시간 영상감시 시스템 개발)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.240-244
    • /
    • 2007
  • Non-intrusive methods based on active remote IR illumination fur eye tracking is important for many applications of vision-based man-machine interaction. One problem that has plagued those methods is their sensitivity to lighting condition change. This tends to significantly limit their scope of application. In this paper, we present a new real-time eye detection and tracking methodology that works under variable and realistic lighting conditions. Based on combining the bright-pupil effect resulted from IR light and the conventional appearance-based object recognition technique, our method can robustly track eyes when the pupils are not very bright due to significant external illumination interferences. The appearance model is incorporated in both eyes detection and tracking via the use of support vector machine and the mean shift tracking. Additional improvement is achieved from modifying the image acquisition apparatus including the illuminator and the camera.

  • PDF

Facial-feature Detection in Color Images using Chrominance Components and Mean-Gray Morphology Operation (색도정보와 Mean-Gray 모폴로지 연산을 이용한 컬러영상에서의 얼굴특징점 검출)

  • 강영도;양창우;김장형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.714-720
    • /
    • 2004
  • In detecting human faces in color images, additional geometric computation is often necessary for validating the face-candidate regions having various forms. In this paper, we propose a method that detects the facial features using chrominance components of color which do not affected by face occlusion and orientation. The proposed algorithm uses the property that the Cb and Cr components have consistent differences around the facial features, especially eye-area. We designed the Mean-Gray Morphology operator to emphasize the feature areas in the eye-map image which generated by basic chrominance differences. Experimental results show that this method can detect the facial features under various face candidate regions effectively.

Ai-Based Cataract Detection Platform Develop (인공지능 기반의 백내장 검출 플랫폼 개발)

  • Park, Doyoung;Kim, Baek-Ki
    • Journal of Platform Technology
    • /
    • v.10 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Artificial intelligence-based health data verification has become an essential element not only to help clinical research, but also to develop new treatments. Since the US Food and Drug Administration (FDA) approved the marketing of medical devices that detect mild abnormal diabetic retinopathy in adult diabetic patients using artificial intelligence in the field of medical diagnosis, tests using artificial intelligence have been increasing. In this study, an artificial intelligence model based on image classification was created using a Teachable Machine supported by Google, and a predictive model was completed through learning. This not only facilitates the early detection of cataracts among eye diseases occurring among patients with chronic diseases, but also serves as basic research for developing a digital personal health healthcare app for eye disease prevention as a healthcare program for eye health.

Optical Design of a Snapshot Nonmydriatic Fundus-imaging Spectrometer Based on the Eye Model

  • Zhao, Xuehui;Chang, Jun;Zhang, Wenchao;Wang, Dajiang;Chen, Weilin;Cao, Jiajing
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • Fundus images can reflect ocular diseases and systemic diseases such as glaucoma, diabetes mellitus, and hypertension. Thus, research on fundus-detection equipment is of great importance. The fundus camera has been widely used as a kind of noninvasive detection equipment. Most existing devices can only obtain two-dimensional (2D) retinal-image information, yet the fundus of the human eye also has spectral characteristics. The fundus has many pigments, and their different distributions in the eye lead to dissimilar tissue penetration for light waves, which can reflect the corresponding fundus structure. To obtain more abundant information and improve the detection level of equipment, a snapshot nonmydriatic fundus imaging spectral system, including fundus-imaging spectrometer and illumination system, is studied in this paper. The system uses a microlens array to realize snapshot technology; information can be obtained from only a single exposure. The system does not need to dilate the pupil. Hence, the operation is simple, which reduces its influence on the detected object. The system works in the visible and near-infrared bands (550-800 nm), with a volume less than 400 mm × 120 mm × 75 mm and a spectral resolution better than 6 nm.