The discussion in this paper aims to introduce an approach to detect drowsiness with Android based smartphones using the OpenCV platform tools. OpenCV for Android actually provides powerful tools for real-time body's parts tracking. We discuss here about the maximization of the accuracy in real-time eye tracking. Then we try to develop an approach for detecting eye blink by analyzing the structure and color variations of human eyes. Finally, we introduce a time variable to capture drowsiness.
최근 기술의 발달로 국내에 10명 중 8명은 스마트폰을 사용하고 있다. 또한, 스마트폰을 이용한 다양한 어플리케이션들이 개발되었다. 이로 인해, 스마트폰 중독현상이 사회적인 문제로 대두되고 있다. 특히, 스마트폰 중독은 스스로가 조절하기 어렵고, 자각하기 힘들다. 주로 설문지를 중심으로한 연구들에서, 스마트폰 중독을 진단하기 위해 예를 들면 S-척도와 같은 연구를 수행해왔다. 본 연구에서는 ECG(심전도)와 Eye Gaze 신호를 이용한 검출 방법을 제안하고자 한다. 피험자가 감정 영상을 시청했을 때, 피험자의 ECG 신호와 Eye Gaze 신호를 각각 Shimmer와 스마트아이를 이용하여 측정한다. 더불어, ECG 신호의 S-transform 결과를 특징으로 추출한다. 또한 동공의 직경, 시선과의 거리, 눈 깜빡임으로 구성된 Eye Gaze 신호로부터 12개의 특징을 추출한다. 분류기는 랜덤 포레스트를 이용하여 학습시키고 피험자의 데이터를 이용하여 스마트폰 중독군을 검출한다. 검출한 결과와 실험 전 진행한 S-척도 결과와 비교한 결과 ECG는 87.89%의 정확도, Eye Gaze는 60.25%의 정확도를 보여주는 것을 알 수 있었다.
얼굴인식, 홍채인식과 같은 생체보안 분야에서 눈, 코, 입술 등 얼굴특징을 추출하는 과정은 필수적이다. 본 논문은 초고속(faster) R-CNN을 이용하여 얼굴영상에서 눈 및 입술영역을 검출하는 방법을 연구하였다. 초고속 R-CNN은 딥러닝을 이용한 물체검출 방법으로 기존의 특징기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 얼굴영상에 콘볼루션, 선형정류과정, max pooling과정을 차례로 적용하여 특징맵을 추출하고 이로부터 제안영역(region proposal)을 검출하는 RPN(region proposal network)을 학습한다. 그리고 제안영역과 특징맵을 이용하여 눈 및 입술 검출기(detector)를 학습한다. 제안방법의 성능을 검토하기 위해 남녀한국인 얼굴영상 800장으로 실험하였다. 학습을 위해 480장을 이용했으며 테스트용으로 320장을 사용하였다. 컴퓨터모의 실험결과 눈 및 입술영역 검출의 평균정확도는 50 에포치일 때 각각 97.7%, 91.0%를 얻을 수 있었다.
본 논문에서는 다양한 조명하에서 실시간으로 눈을 검출하고 추적하는 새로운 방법을 제안하고자 한다. 기존의 능동적 적외선을 이용한 눈 검출 및 추적 방법은 외부의 조명에 매우 민감하게 반응하는 문제점을 가지고 있으므로, 본 논문에서는 적외선 조명을 이용한 밝은 동공 효과와 전형적인 외형을 기반으로 한 사물 인식 기술을 결합하여 외부 조명의 간섭으로 밝은 동공 효과가 나타나지 않는 경우에도 견실하게 눈을 검출하고 추적 할 수 있는 방법을 제안한다. 눈 검출과 추적을 위해 SVM과 평균 이동 추적방법을 사용하였고, 적외선 조명과 카메라를 포함한 영상 획득 장치를 구성하여 제안된 방법이 효율적으로 다양한 조명하에서 눈 검출과 추적을 할 수 있음을 보여 주었다.
본 논문에서는 프로젝션 함수와 허프 변환을 이용하여 영상에서 눈동자를 찾는 방법을 제안한다. 먼저, 영상으로부터 얼굴영역을 추출한 다음, 눈썹과 눈동자의 밝기변화의 특징을 이용할 수 있는 integral projection function과 variance projection function을 사용하여 눈 영역을 검출한다. 검출된 눈 영역에서 눈동자 중심좌표를 구하기 위해 원형 허프 변환을 이용한다. 원형 허프 변환에 사용된 좌표는 sobel edge mask를 사용하여 구한다. FERET database의 정면 얼굴 영상을 이용하여 제안된 방법으로 실험한 결과 만족할 만한 결과가 나왔다.
Many of facial feature extracting applications and systems have been developed in the field of face recognition systems and its application, and most of them use the eyes as a key-feature of human face. In this paper we show a simple and fast eye detection algorithm for embedded systems. The eyes are very important facial features because of the attribution they have. For example, we know the darkest regions in a face are the pair of pupils, and the eyes are always a pair and parallel. Using such attributors, our algorithm works well under various light conditions, size of face in image, and various pose such as panning and tilting. The main keys to develop this algorithm are the eyes' attribution that we can usually contemplate and easily find when we think about what is the attribution that the eyes have. With some constraints of the eyes and knowledge of the anthropometric human face, we detect human eye in an image, and the experimental results demonstrate successful eye detection.
A face recognition algorithm for the user identification procedure of automatic teller machine(ATM), as an application of the still image processing techniques is proposed in this paper. In the proposed algorithm, face recognition techniques, especially, face region detection, eye and mouth detection schemes, which can distinguish abnormal faces from normal faces, are proposed. We define normal face, which is acceptable, as a face without sunglasses or a mask, and abnormal face, which is non-acceptable, as that wearing both, or either one of them. The proposed face recognition algorithm is composed of three stages: the face region detection stage, the preprocessing stage for facial feature detection and the eye and mouth detection stage. Experimental results show that the proposed algorithm can distinguish abnormal faces from normal faces accurately from restrictive sample images.
최근 영상 인식 분야에서 얼굴 또는 표정 인식에 대한 연구가 다양하게 진행되고 있으며, 얼굴의 특징을 반영하는 눈 영역을 자동으로 추출하는 방법이 얼굴 또는 표정 인식을 위한 전처리 단계로써 특히 중요하게 연구되고 있다. 눈 영역을 추출하기 위한.기존 방법들은 크게 적외선(IR) 카메라를 이용한 방법과 template-matching과 같은 영상처리를 이용한 방법으로 분류되며, 주로 정면을 바로 보는 얼굴에 대해 초점을 맞추고 있다. 본 논문에서는 기울어진 얼굴 영상에서 눈 영역 추출 방법을 제안한다. 빠른 수행 시간을 위해 영상의 에지 정보를 이용한 방법을 기반으로 하며, 기울어진 얼굴 영상에서 눈 영역을 추출하기 위해 전역적 얼굴 영역의 에지 기울기 누적 히스토그램을 이용하며, 영상 잡음과 빛의 영향에 의해 발생되는 문제는 대략적으로 추출된 영역에서 지역정보인 가로, 세로 비와 전역 정보인 각 구성요소(component)간의 관계성을 이용하여 해결한다 실험 결과에서 에지 정보를 이용한 방법에서 생기는 3가지 오추출을 해결함으로써 정확도를 향상시키며, The Weizmann Institute of Science에서 제공하는 300개의 영상을 통해 실험한 결과 평균 0.5초와 83%의 수행 시간과 정확도을 나타냄을 볼 수 있다.
얼굴검출은 얼굴인식과 비디오감시 시스템, HCI등 응용분야가 다양하므로 많은 연구가 필요하다. 따라서, 본 논문에서는 실시간으로 얼굴을 검출하기 위하여 카메라에서 연속 얼굴 영상을 획득 한 후, 이 영상을 YCbCr 칼라 공간으로 변환하였다. 변환된 칼라 공간에서는 필터를 이용하여 피부색만을 분리하여 연결성분 분석으로 얼굴후보 블록을 결정하였다. 또한 외부 환경 변화에 영향을 받지 않기 위해 밝기 분포 평준화를 수행하였다. 밝기 분포를 평준화한 영상에서는 눈 영역이 다른 영역에 비해 뚜렷하게 구별되기 때문에 임의의 임계값을 적용하여 이진화 영상으로 변환 후 눈 검출을 할 수 있었다. 순차 임계값은 낮은 값에서부터 순차적으로 값을 증가시키면서 눈을 검출하고, 실패하였을 경우는 임계값이 조정되어 다시 눈을 검출한다. 순차 임계법에 의해 검출된 눈 영역은 정규화과정을 거친 후 역전파 알고리듬을 이용하여 눈 검증을 실시하고, 최종적으로 얼굴 검출을 수행하였다.
본 논문에서는 운전자 졸음 인식 시스템의 구현 방법과 그에 따른 결과를 소개한다. 영상 입력 장치로는 시중에 판매되는 웹캠 카메라를 사용하였다. 얼굴 검출 방법으로는 Haar 변환 기법을 이용하였으며, 다양한 조명 환경에 강건하게 적응하도록 조명정규화를 수행하였다. 조명정규화를 거친 얼굴 영상은 특징값 추출에 용이하다. 조명정규화를 통한 눈 후보영역은 인체측정학 정보를 이용하여 후보 영역을 줄인 이후에 PCA와 Circle Mask의 혼합 모델을 적용했다. 위 방법을 통해 차량 내부의 복잡한 조명 환경 속에서 강건히 눈 영역을 추출한다. 검출된 눈 영역은 고해상도의 조명 정규화 영상과 간단한 연산을 통하여 졸음 여부를 판별한다. 졸음 상태가 1단계로 판단 될 경우에는 통합 모니터링 인터페이스에서 운전자에게 경고음을 울리며 2단계일 경우에는 CAN(Controller Area Network)를 통하여 안전벨트를 진동하게 함으로써 운전자에게 경고를 준다. 본 논문에서 제안하는 졸음 인식 시스템은 낮은 계산 복잡도를 만족하는 동시에 높은 인식률을 보여준다. 실험 결과 차량 내에서 97%의 인식률이 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.