• Title/Summary/Keyword: Exudation of plasticizer

Search Result 2, Processing Time 0.015 seconds

Study on Degradation Characteristics and Chemical Cleaning Methods of Plasticized PVC for Conservation of Plastic Artifact (연질 PVC 작품 보존을 위한 가소제 종류별 열화 특성 및 화학적 세척법 연구)

  • Lee, Na Ra;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • Plasticizers, which are added to plastics, can cause exudation, which means that the plasticizer comes out from surface of the plastics. This causes the surface of plastic artworks to become sticky, and this allows dust and pollutants to become attached to the surface. Therefore, in this study, the degradation characteristics and chemical cleaning methods of each type of plasticizer are evaluated using PVC specimens. To evaluate the degradation characteristics and chemical cleaning methods, microscopic observation, chromaticity and weight measurement, and FT-IR spectroscopy were performed. The results showed that PVCs containing different plasticizers have different degradation patterns. Especially, the PVC containing TOTM showed discoloration and exudation. In the evaluation of the chemical cleaning methods, ethyl alcohol and KOH solution showed good effects, but their stability was not good. Surfactant was found to have a good cleaning effect and stability as a cleaner for exudated plasticizers.

Preparation and Characterization of Cellulose Acetate/Poly Ethylene Glycol Blend Having High Melt Processibility (우수한 용융특성을 갖는 Cellulose acetate/Poly ethylene glycol 조성물의 제조 및 특성 해석)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eunjoo;Go, Young Jun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: Cellulose acetate (CA) was blended with polyethyleneglycol (PEG) having different molecular weight at various mixing conditions to enhance melt-processibility of CA, which might prevent the harmful effect resulted from the introduction of phthalic plasticizer. Methods: To establish optimal plasticizing conditions, CA/PEG blends were examined under various plasticizing conditions: PEG concentration, molecular weight of PEG, and plasticzing temperature. Mechanical properties of the CA/PEG blends, as well as migration and exudation of the PEG, were performed in order to evaluate the efficiency of plasticization. Results: Compared to industrial CA resin plasticized by diethyl phthalate, CA/PEG blends exhibited similar thermal plasticization. It was established that the optimum condition was to blend 30~40 phr PEG with molecular weight 400 at $175{\sim}180^{\circ}C$. CA/PEG blend showed superior glassness, PEG stability, and mechanical properties. Conclusions: CA/PEG blends would be a eco-friendly glasses frame to substitute traditional CA glasses frame prepared phthalate plasticizers.