• Title/Summary/Keyword: Extrusion casting

Search Result 56, Processing Time 0.028 seconds

Reheating Process of Extrusion Billet with Large Dimension (대형 압출 빌렛트의 재가열 공정)

  • 배정운;서판기;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.261-264
    • /
    • 2003
  • Semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Many advantages are associated with this forming process at the condition that the forming operation is performed under appropriate conditions. The thixoforming process, which needs a suspension of a globular, non-dendritic solid phase in the liquid phase, is characterized by three major steps. The first step is casting of billets with a microstructure suited for thixoforming. The second step is reheating of slugs cut from these billets. The third step is injection of the semi-solid slugs into a die. In this paper, the horizontal reheating machine to obtain the optimal conditions suitable for semiu-solid die casting process was used and applied to extrusion material. It is estimated the possibility of application on semi-solid die casting with extrusion material through various results.

  • PDF

산업부문 B2B 시범사업 소개 - 금형업종 -

  • 류병우
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.105-109
    • /
    • 2001
  • 성형의 종류 ◈금속 성형 ㆍ 스탬핑(Stamping) ㆍ 정밀 블랭킹(Fine Blanking) ㆍ 딥 드로잉(Deep Drawing) ㆍ 다이캐스팅(Die Casting) ㆍ 인베스트먼트 주조(Investment Casting) ㆍ 분말 야금(Power Metallurgy) ㆍ 인발(Wire Drawing) ㆍ 압출(Extrusion) ㆍ 단조(Forging) ㆍ ㆍ코이닝(Coining) ㆍ... ◈비금속 성형 ㆍ 사출(Injection) ㆍ 압축(Compression) ㆍ 블로우 성형(Blow Molding) ㆍ 진공 성형(Vacuum Molding) ㆍ 발포 성형(Foam Molding) ㆍ 피복(Encapsulation) ㆍ 회전식(Rotational) ㆍ 주조(Casting) ㆍ 적층(Laminating) ㆍ 압출(Extrusion) ㆍ...(중략)

  • PDF

Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting (용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향)

  • Seo, Y.H;Kang, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.

Microstructures and Mechanical Properties of AM80-xSn Magnesium Alloys with Semi-Solid casting and Hot Extrusion Process (AM80-xSn 마그네슘 합금의 반응고 주조 및 압출에 따른 미세조직 및 기계적 특성)

  • Kim, Dae-Hwan;Im, In-Taek;Jin, Qinlin;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.215-221
    • /
    • 2016
  • In a recent study, the microstructures and mechanical properties of AM80-xSn magnesium alloys with semi solid casting and hot extrusion process were investigated. With increasing Sn content, the amount of ${\beta}$(Mg2Sn) phase increased, while the ${\alpha}-Mg$ dendritic size decreased. The hardness was increased by the Mg2Sn as the Sn content increased. With increasing Sn content, permanent mold cast and semi solid cast AM80 Mg alloy showed less reduction of hardness and also of extruded AM80 Mg alloy after annealing. In the case of the mechanical properties, the extruded semi solid casting AM80 Mg alloy showed higher tensile strength and yield strength with increasing Sn content compared to the extruded permanent mold cast AM80 Mg alloy at room temperature.

Effect of Extrusion Conditions on Microstructures and Mechanical Properties of AM80 Magnesium Alloys (AM80 마그네슘 합금의 미세조직 및 기계적 특성에 대한 압출조건의 영향)

  • Lee, S.K.;Kim, D.H.;Kim, D.H.;Lim, S.G.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.379-385
    • /
    • 2018
  • This study investigated the effect of extrusion conditions on microstructures and mechanical properties of AM80 magnesium alloys. The billets of magnesium alloy used for hot extrusion were prepared by permanent mold casting method, and its extrusion was hot direct extrusion with different extrusion conditions. The results of microstructural analysis showed that the main phases in the as-casted alloys were ${\alpha}-Mg$, ${\beta}-Mg_{17}Al_{12}$, and lamella $Mg_{17}Al_{12}$. Hot extrusion results, The tensile strength of the most soundly manufactured extruded bars (extrusion temp: $350^{\circ}C$, extrusion ratio: 27:1, ram speed: 2mm/s) was approximately 327MPa at room temperature. The increase in the mechanical properties of hot-extruded alloys was as a result of grain refinement by dynamical recrystallization during hot extrusion.

Numerical Simulation of Die Characteristics for Different Dies in Film Casting Extrusion Processes

  • Kim, Ju Hyun;Kim, See Jo
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.329-338
    • /
    • 2020
  • In this study, three different die geometries were selected to understand the die characteristics in the film casting extrusion processes. First, large and small-scale T-dies were numerically simulated to observe the scaled-down effect on the flow inside the dies. Second, three different dies-keyhole, linear tapper coat-hanger die (LTCD), and curved tapper coat-hanger die (CTCD)-were numerically observed and discussed according to the mass flow rate. Finally, the die exit velocity profiles and die characteristics were observed and discussed based on the power-law index for the LTCD die. These numerical simulations and numerical data will aid the optimization of the die design in industrial fields.

Effect of the Extrusion Ratios on Fiber Breakage and Orientation in Hot Extrusion Process in Metal Matrix Composites (금속복합재료의 열간압출공정에 있어서 압출비가 섬유의 파단 및 배향에 미치는 영향)

  • Kang, C.G.;Kang, S.S.;Kim, B.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1740-1750
    • /
    • 1993
  • The aluminar short fiber reinforced composite materials for hot extrusion were fabricated by semi-solid stirring method, and extruded at extrusion temperature $400^{\circ}C$ with various extrusion ratio. The hot extrusion load of volume fraction 15% metal matrix composites and base alloy Al7075 has been compared. The fiber length distribution, fiber breakage and fiber orientation are investiged to know the fiber behaviour in before and after hot extrusion. The tensile strength of the hot extruded billet are experimentally determined for different of extrusion ratios, and compared with theorically calculated strength.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성)

  • Lim, Suk-Won;Nishida, Yoshinori
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF