• 제목/요약/키워드: Extrusion Welding Process

검색결과 50건 처리시간 0.019초

유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계 (Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method)

  • 이성윤;이인규;정명식;고대철;이상곤
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

수치해석을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출금형 개발 (Development of Porthole Extrusion Die for Improving Welding Pressure in Welding Chamber by Using Numerical Analysis)

  • 이성윤;이인규;정명식;고대철;김병민;이상곤
    • 소성∙가공
    • /
    • 제26권2호
    • /
    • pp.115-120
    • /
    • 2017
  • Porthole extrusion process is a very effective metal forming process to produce aluminum profiles with hollow sections. The structure of porthole extrusion die is very complex. In this process, the billet is divided by porthole bridge, and then the divided billet is welded in the welding chamber. The welding pressure in the welding chamber is very important. The higher welding pressure improves the quality of the aluminum profiles. Therefore, the objective of this study is to develop a new porthole extrusion die for improving the welding pressure in the welding chamber by using numerical analysis. The effectiveness of the new porthole extrusion die was verified by using numerical analysis. Through numerical analysis, the welding pressures in the welding chamber between the new porthole die and the conventional porthole die were compared with each other.

포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정 (Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes)

  • 정충식;조형호;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

알루미늄 판재의 압출점접합공정에 있어서 접합강도에 관한 연구 (A Study on Welding Strength of Extru-Riveting Process of Aluminum Plates)

  • 이정훈;김태현;이문용;진인태
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.460-467
    • /
    • 2010
  • It was studied that two plates of aluminum can be welded by extru-riveting experiments with extru-rivet welding dies, and that the welding strength and metal flow on the welding section were analyzed by computer simulation according to the welding variable such as the diameter of extrusion insert dies. It was known by computer simulation that welding strength on the welding section of plates could be influenced by the diameter of extrusion insert dies. And it was known by experiments that two plates of aluminum can be welded on a spot point on aluminum plate by extru-rivet welding process, and that welding strength is higher and higher if the diameter of extrusion insert die is smaller and smaller, and that welding strength is the highest when diameter of extrusion insert dies is ${\emptyset}4.2$mm in the case that the diameter of rivet is 5 mm, when aluminum 5052 two plates with 1.5 mm thickness and one plate with 3mm thickness for rivet plate are used as welding material.

포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발 (Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die)

  • 이정민;김병민;강충길;조형호
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향 (The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion)

  • 이정민;김병민;정영득;조훈;조형호
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

맨드렐이 있는 포트홀 압출의 소성유동에 관한 연구 (A Study on the Plastic Flow for Porthole Extrusion with Mandrel)

  • 임헌조;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.78-81
    • /
    • 2000
  • In this study the plasic flow before welding stage in the cahamber is analyzed by FEM and experiments during the porthole extrusion process. The analysis is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die with mandrell. Numerical simulation by finite element code to investigate the plastic flow is discussed for both tapered inlet and straight inlet chamber. To visualize the flow in extrusion process split dies and punches are designed and manufactred by wire EDM. Experiments are carried out by using the plasticine as a model material at room temperature. The theoretical predictions are reasonable agreements with experimental results in the welding lines and the deformed profiles.

  • PDF

HDPE 관의 TEE 성형에 대한 유한요소해석 (Finite Element Analysis of TEE Forming for HDPE Pipe)

  • 왕창범;송두호;박용복
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.298-307
    • /
    • 2006
  • 본 논문에서 HDPE 관의 일체형 TEE성형 공정은 강소성 유한요소 해석 프로그램인 DEFORM-3D를 이용하여 해석을 하였다. 이중 보온관에서 외관으로 사용되는 HDPE 관은 관을 통하여 흐르는 온수의 온도를 유지하기 위한 관으로, TEE는 주관에 가지관을 연결하여 열의 수송방향을 바꾸는 역할을 한다. TEE제작에 압출 용접(Extrusion Welding)을 사용하는 기존의 방법으로는 이음부에서 강도가 취약한 문제점이 발생하기 때문에 HDPE 관을 성형시켜 TEE 형태로 일체화시킨 후에 맞대기 용접(Butt Welding)을 하는 방식을 제안하였다. 열간과 냉간 성형 실험을 실시하였고, 초기 구멍 형태에 따른 모델 파라미터가 강소성 유한요소해석에 의해 규명되어 졌으며, 이는 실제의 제품 제조 공정에 적용되어 졌다.

  • PDF

압출공정 및 제품 향상을 위한 유한요소 해석기법의 적용 (FEM Method Application for Extrusion process and Product improvement)

  • 배재호;이정민;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2004
  • It have been proceeded that research of analysis of extrusion process using porthole die. recently it is performed partly through the finite element method in the non steady state that design variables. The subject of this research is integrity improvement of speaker body which is being produced by porthole die extrusion in my country. Extrusion load of speaker case, and welding pressure of billet in the chamber are estimated by the means of rigid-plasticity finite element method. And then extrusion of trial was performed to estimate the validity of FE analysis.

  • PDF

접합실 높이에 따른 컨덴서 튜브 직접압출 공정 및 금형강도 해석 (Die Stress and Process Analysis for Condenser Tube Extrusion according to Chamber Height)

  • 이정민;김병민;정영득;조훈;조형호
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.214-220
    • /
    • 2003
  • In the case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. There have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length in porthole die. The welding chamber height in condenser tube was calculated by using finite element method. Forming analysis results for condenser tube would provide useful information for the optimal design of porthole die.