• 제목/요약/키워드: Extrusion Temperature

검색결과 476건 처리시간 0.024초

반용융 복합압출 제품의 성형실험 및 유한요소해석 (Finite Element Analysis and Experiment of Combined Extrusion in Semi-Solid State)

  • 최재찬;박준홍;김병민
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.313-318
    • /
    • 1999
  • Many products related to automobile and airplane industry have been manufactured by semi-solid forging. In this paper finite element analysis of product by combined extrusion in semi-solid state was performed and its experimental verification using A356 was conducted. distribution of solid fraction was analyzed and compared with the experimental microstructure in the product. In addition, distribution of temperature in the product was analysed by finite element method.

  • PDF

유한요소법을 이용한 AZ31 마그네슘합금의 직/간접 압출 전산모사 (The simulation of direct/indirect extrusion of AZ3l magnesium alloy by FEM)

  • 이형욱;윤덕재;박성수;유봉선;최시훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.142-145
    • /
    • 2008
  • A finite element analysis has been conducted to simulate direct/indirect extrusion process for AZ31 Mg alloy at various ram and die speeds. Uniaxial compression test on AZ31 Mg alloy was carried out at various strain rates and temperatures and the result was used as input data fur finite element analysis. It was found that ram speed affects the distribution of dead zone area during direct extrusion. The inhomogeneous temperature and strain distributions through the thickness direction can be simulated under the various extrusion process conditions.

  • PDF

구리-알루미늄 클래드 봉의 정수압 압출 특성 연구 (A Research on Hydrostatic Extrusion of Copper-Clad Aluminum Bar)

  • 김창훈;김시영
    • 해양환경안전학회지
    • /
    • 제5권2호
    • /
    • pp.27-33
    • /
    • 1999
  • The present study is concerned with the hydrostatic extrusion process of copper-clad aluminum rod through metallurgical joining. In this study, the rigid plastic finite element program, HICKORY, is used to analyze the steady state extrusion process of the bimetal rod. Simulations are performed for copper-clad aluminum rod with several extrusion ratio to give the distributions of effective strain rate, equivalent stress and hardness. Experiments are also carried out for aluminum-inserted copper rod at room temperature. It is found out that finite element predictions are generally in good agreement with the experimental observations. The detail comparison of the extrusion loads by the finite element method with those by experiments are given.

  • PDF

포트홀 압출의 소성유동에 대한 이론 및 실험적 연구 (A Theoretical and Experimental Study on the Plastic Flow in Porthole Extrusion)

  • 한철호;임헌조
    • 소성∙가공
    • /
    • 제10권6호
    • /
    • pp.485-492
    • /
    • 2001
  • The paper is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die. The extrusion process is analyzed by numerical simulation and experiments in the unsteady state. The effects of types of inlet with and without taper on the flow and extrusion load are mainly discussed and compared by FEA and experiments. Experiments are carried out by using the plasticine as a model material at room temperature. To visualize the plastic flow in the extrusion process, some split dies and punches are designed and manufactured by EDM. The theoretical predictions by FEM are reasonable agreements with experimental results on the deformed configurations and welding lines.

  • PDF

Effects of Extrusion Variable on Functional and Nutritional Properties of Extruded Oat Products

  • Gutkoski, Luiz Carlos;El-Dash, Ahmed Atia
    • Preventive Nutrition and Food Science
    • /
    • 제4권3호
    • /
    • pp.159-162
    • /
    • 1999
  • The purpose of this research was to study the effects of initial moisture levels and extrusion temperatures on dietary fiber, nitrogen solubility index, available lysine, and the in vitro protein digestibility of extruded oat productes. The dehulled grains were ground in a Brabender quadrumat Senior mill and the coarse fraction, with higher crude protein, lipids and dietary fiber were conditioned on various mositre levels (15.5~25.5%) and extruded in a Brabender single-screw laboratory extruder. The extrudates showed a higher amount of soluble dietary fiber (8.14%) than in the raw material . However, the extrusion process affected the nutritional value of the protein due to a decrease in available lysine with increased temperature . The in vitro protein digestibility was unaffected by initial moisture levels and the extrusion temperatures examined.

  • PDF

유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계 (Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method)

  • 이성윤;이인규;정명식;고대철;이상곤
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

Flow Analysis of Profile Extrusion by a Modified Cross-sectional Numerical Method

  • Seo, Dongjin;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • 제1권2호
    • /
    • pp.103-110
    • /
    • 2000
  • Flow analysis of profile extrusion is essential for design and production of a profile extrusion die. Velocity, pressure, and temperature distribution in an extrusion die are predicted and compared with the experimental results. A two dimensional numerical method is proposed for three dimensional analysis of the flow field within the profile extrusion die by applying a modified cross-sectional numerical method. Since the cross-sectional shape of the die is varied gradually, it is assumed that the pressure is constant within a cross-sectional plane that is perpendicular to the flow direction. With this assumption, the velocity component in the cross-sectional direction is neglected. The exact cross-sectional shape at any position is calculated based on the geometry of standard cross-sections. The momentum and energy equations are solved with proper boundary conditions at a cross-section and then the same calculation is carried out for the next cross-section using the current calculated values. An L-shaped profile extrusion die is produced and employed for experimental investigation using a commercially available polypropylene. Numerical prediction for the varying cross-sectional shape provides better results than the previous studies and is in good agreement with the experimental results.

  • PDF

금형 냉각과 압출 속도가 7075 합금 압출에 미치는 영향에 대한 현상학적 분석 (Phenomenological Analysis of the Effects of Die Cooling and Extrusion Speed on the Extrusion of 7075 alloy)

  • 성상규;강현준;이상용
    • 열처리공학회지
    • /
    • 제34권4호
    • /
    • pp.185-190
    • /
    • 2021
  • The extrusion experiments using the 7075 aluminum billet have been performed to investigate the effects of die cooling and ram speed on the occurrence of surface defects on the extrudate. The purpose of die cooling was to suppress overheating of the extrudate at the moment of extrusion. In the present die cooling system, liquid nitrogen has been injected in to the die and sprayed to the surface of extrudate. Ram speed was either kept or varied in the range of 1.1~1.7 mm/sec. throughout one extrusion shot to check the occurrence of surface defects. Every extrusion started at a ram speed of 1.25 mm/sec. The temperature of extrudate was measured using a laser thermometer. The 7075 billet of 180 mm in diameter and 550 mm in length was preheated at 390℃ and extruded to get a single plate of 8000 mm in length, 150 mm in width and 10 mm in thickness. Each extrudate was checked by eye to find the surface defects. The microstructures were obtained in the specimen cut from each corner of the extrudate using the EBSD micrographs.

억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향 (The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment)

  • 박선태;구본철;최용환;문윤호;안승현;차영록;김중곤;안기홍;서세정;박돈희
    • 신재생에너지
    • /
    • 제6권4호
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.

Effects of Moisture and Barrel Temperature of Extrusion Process on Physicochemical and Functional Properties of Specialty Rice Cultivars

  • Choi, In-Duck;Song, Jin;Lee, Choon-Ki;Kim, Kee-Jong;Suh, Sea-Jung;Son, Jong-Rok;Ryu, Gi-Hyung;Kim, Jae-Hyun
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.319-323
    • /
    • 2008
  • Mutant rice cv. Goami2 (G2) and Baegjinjoo (BJJ) derived from a high-quality japonica rice cv. Ilpumbyeo (IP) were extruded under different feed moisture (20 and 30%) and barrel temperature (90, 110, and $130^{\circ}C$). Increasing feed moisture at fixed barrel temperature increased extrudate density (ED) in IP and BJJ. Whereas, G2 showed a varied ED depending on extrusion conditions; increasing barrel temperature decreased the ED of G2 extrudate with low feed moisture, but increased with high moisture. Results indicated a positive barrcl temperature effect on volume expansion in IP and G2, but a negative effect on 811, probably due to shrinkage of expanded products containing low-amylose contents. A significant increase of water absorption was found in G2 and BJJ extruded flour, while an increase of water solubility in those from IP. Non-digestible carbohydrates measured by total dietary fiber (TDF) indicated that extrusion increased slightly TDF in IP and BJJ extrudates, but decreased in G2 products, which might be variety-dependent.