• Title/Summary/Keyword: Extrusion Temperature

Search Result 474, Processing Time 0.03 seconds

Development of Textures and Microstructures during Compression in a Hot-Extruded AZ31 Mg Alloy (고온압출한 AZ 31 마그네슘 합금의 압축변형 중 집합조직과 미세조직의 발달)

  • Jung, Byung Jo;Lee, Myung Jae;Park, Yong-Bum
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The development of textures and microstructures during plastic deformation in a hot-extruded AZ 31 Mg alloy was investigated using a compression test with such parameters as deformation temperature, strain rate. It was observed from true stress-strain curves that twinning involves changes of the flow stresses. In the early stages of deformation at temperatures lower than $200^{\circ}C$, the occurrence of twins resulted in a decrease of the work-hardening rate, which increased drastically at a true strain of -0.05. The evolution of the deformation textures were assessed with the aid of EBSD analyses in terms of the competition between twinning and slip activity.

Numerical Analysis of the Non-Isothermal Heat Transfer in Solids Conveying Zone of a Single Screw Extruder (단축압출기 고체수송부에서의 비등온 열전달 현상에 관한 수치 해석)

  • Ahn Young-Cheol
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.549-556
    • /
    • 2005
  • Effects of the dimensionless variables on the heat transport phenomena in the extrusion process of a single screw extruder have been studied numerically. Based on the understanding of the solids conveying related to the geometrical structure and characteristics of the screw, the heat balance equation for the solids conveying zone was established and normalized. The finite volume method and power-law scheme were applied to derive a discretized equation and the equation was solved using the alternating direction iterative method with relaxation. Effects of the dimensionless parameters, Biot and Peclet numbers, that define the heat transfer characteristics of the solids conveying zone have been investigated with respect to the temperature of the feeding zone and the length of the solids conveying zone. As the Biot number is increased, the heat loss by cooling dominates to decrease the temperature of the barrel but it has little effects on the temperature of the solids bed and the length of the solids conveying zone. On the other hand, if the Peclet number is increased, the convection term dominates to decrease the temperature of the solids bed and it results in an increase in the length of the solids conveying zone.

Mechanical and Impact Properties and Heat Deflection Temperature of Wood Flour-reinforced Recycled Polyethylene Green Composites (목분강화 재활용폴리에틸렌 그린복합재료의 기계적 특성, 충격 특성 및 열변형온도)

  • Lee, Ki-Young;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Considering of utilizing renewable resources and recycled plastics, green composites consisted of recycled polyethylene (PE) as matrix and eco-friendly natural fibers as reinforcement were processed and characterized in the present study. First, the wood flour/recycled polyethylene pellets with different wood flour contents were prepared by twin-screw extrusion processing. Using the pellets, wood flour/recycled polyethylene green composites were fabricated and the effects of wood flour loading on their flexural, tensile, impact properties, heat deflection temperature and fracture behavior were investigated. It was concluded that the flexural strength, flexural modulus, tensile modulus and heat deflection temperature of wood flour/recycled polyethylene green composites were increased with wood flour, whereas the tensile strength and impact strength were decreased. The fracture behavior observed by means of scanning electron microscopy supported qualitatively the tendency of the impact strength with wood flour loading, compared with the ductile fracture pattern of recycled polyethylene.

Effect of Microstructure Change According to Tempering Temperature on Room Temperature Tensile Properties in Carbon Steel of SM30C (SM30C의 탄소강에서 템퍼링 온도에 따른 미세조직 변화가 상온 인장특성에 미치는 영향)

  • Yebeen Ji;Kibeom Kim;Jung jong Min;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • In order to process plastic with similar mechanical performance to metal materials, it is necessary to improve the strength and hardness of core parts of the injection equipment in extrusion system. The tempering process is a heat treatment performed to reduce brittleness and improve elongation along with improvement of dimensional defects of martensite formed after quenching. In this study, changes in microstructure and mechanical properties according to temperature were evaluated after quenching and tempering of SM30C material. As a result, the strength and hardness were gradually decreased by tempering at 250~400℃, and the decrease was greatly increased under the tempering condition at 450℃. Under the tempering condition of 200~400℃, the main structure was lath martensite, and the precipitation amount and size of needle-shaped cementite increased along the lath with the increase of the tempering temperature. Most of the shape of cementite has a needle-like structure, and the formation of some spherical cementite is observed. Under the tempering condition of 450℃, a mixed structure of ferrite and martensite was formed according to the decomposition of martensite.

Effects of Die Temperature and CO2 Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour (사출구 온도와 CO2 주입이 쌀·토마토 압출성형물의 물리적 특성 및 항산화 활성에 미치는 영향)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • The study was designed to investigate the effects of die temperature and $CO_2$ injection on the physical and antioxidant properties of extruded rice with tomato flour. Moisture content and screw speed were fixed at 25% and 150 rpm, respectively. Die temperatures and $CO_2$ injection were adjusted to 80, 110, and $140^{\circ}C$ and 0, and 300 mL/min, respectively. Specific mechanical energy input decreased as die temperature increased from 80 to $140^{\circ}C$. The expansion index increased, while bulk density decreased with $CO_2$ injection. All extrudates showed increased water soluble index (WSI) and water absorption index through the extrusion process. WSI increased as die temperature increased. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and total phenolic compounds increased as die temperature increased from 80 to $140^{\circ}C$. Total carotenoid and lycopene contents decreased through the extrusion process. Total carotenoid and lycopene contents upon 0 mL/min $CO_2$ injection and $140^{\circ}C$ die temperature were highest at $6.65{\mu}g/g$ and 2.69 mg/kg, respectively. In conclusion, $CO_2$ injection affects expansion properties while an increased die temperature leads to increased DPPH radical scavenging activity and total phenols.

Effects of Die Temperature and Moisture Content on the Quality Characteristics of Extruded Rice with Mealworm (사출구 온도와 수분함량이 갈색거저리(Mealworm) 첨가 압출성형 백미의 품질 특성에 미치는 영향)

  • Cho, Sung Young;Chatpaisarn, Apapan;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • This study aims to make extruded rice snack with high quality in texture and nutrition by adding mealworm. Addition of the mealworm has the merit to fill in high-quality protein and unsaturated fatty acids which are insufficient in rice. Thus, the physicochemical properties were investigated through the process of extrusion cooking. As the extrusion process varied, the die temperatures were set to $120^{\circ}C$ and $130^{\circ}C$. Also, the moisture contents were adjusted to 30% and 35%. The specific length, the expansion ratio, and the water absorption index increased as the added content of mealworm became higher. On the contrary, the density, the breaking strength, the apparent elastic modulus, and the water solubility index decreased. As mealworm and moisture content increased, DPPH radical scavenging activity significantly increased but the rancidity decreased. As a result, the addition of mealworm to the extruded rice snack was effective in improving texture, nutrition, and antioxidation.

Studies on Microbial Penicillin Amidase (II) Characteristics and the Reactor Performance of Whole Cell Immobilized Penicillin Amidase of Escherichia coli (미생물 페니실린 아미다제에 관한 연구 (II) E. coli의 균체 고정화 페니실린 아미다제의 특성 및 반응조에 관한 연구)

  • Seong, Baik-Lin;Kim, Bong-Hee;Mheen, Tae-Iek;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.35-44
    • /
    • 1981
  • Whole cell penicillin amidase of Escherichia coli was immobilized by entrapment in gelatin followed by extrusion and crosslinking with glutaraldehyde. The immobilized engyme preparation demonstrated the recovery yield of activity up to 70% and good stability during storage and operation. The half life of activity decay during the operation was estimated to be about 50 days. The optimum pH and temperature for both of immobilized and soluble enzyme are 8.5 and 5$0^{\circ}C$, respectively. No significant change was demonstrated in the effect of pH and temperature, but the increase in heat stability at high temperature was observed in the case of the immobilized enzyme. It was found that the plug flow reactor could be operated favorably since the pH drop along the column path due to tile reaction product was minimized by employing substrate solution with moderate buffer strength. The optimal condition of reactor operation was discussed with regard to the effect of substrate concentration and the residence time on the conversion efficiency and productivity.

  • PDF

Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing (인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성)

  • Jung, Chang-Gi;Hiroshi, Utsunomiya;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.

Study on the Changes of Cellulose Molecular Weight and α-Cellulose Content by the Extrusion Conditions of Cellulose-NMMO Hydrate Solution (셀룰로오스-NMMO 수화물 용액의 압출가공 조건에 따른 셀룰로오스 분자량과 알파 셀룰로오스 함량 변화에 대한 연구)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.362-372
    • /
    • 2013
  • During extruder processing to manufacture cellulose fiber and film using cellulose-NMMO pre-dope produced by a new method, it seems to occur the changes of molecular weight and ${\alpha}$-cellulose content of cellulose upon thermal and mechanical degradation. In an extruder making cellulose solutions from the pre-dope obtained by high-speed mixer, the changes of cellulose molecular weight and ${\alpha}$-cellulose content resulted with the variations of processing temperature, concentration of cellulose, and residence time. The molecular weight and ${\alpha}$-cellulose content of cellulose decreased with decreasing cellulose concentration and increasing processing temperature. At 15% concentration and short residence time region, the change of ${\alpha}$-cellulose content was so high due to high-shear with an increase in temperature. From these processing conditions, the variations of ${\alpha}$-cellulose content and molecular weight showed different behaviors, and these processing conditions for making cellulose solution were found to be important factors.

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.