• Title/Summary/Keyword: Extrusion Temperature

Search Result 474, Processing Time 0.026 seconds

Effect of Extrusion Temperature on Puffing of White and Red Ginseng (압출성형 온도가 백삼과 홍삼의 팽화에 미치는 영향)

  • Kim, Bong-Su;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1109-1113
    • /
    • 2005
  • The objective of this study was to determine the effect of extrusion temperature on puffing of white and red ginseng powder. The extrusion variables were feed material (red and white ginseng powder) and die temperature $(100\;and\;115^{\circ}C)$. The analyzed characteristics of ginseng extrudates were sectional expansion index, microstructure and rheological properties. Most of biopolymer was highly puffed at higher extrusion temperature, but the cross-sectional expansion of white and red ginseng powder was higher at 1000e and longitudinal expansion seems to higher at $115^{\circ}C$. White and red ginseng powder were puffed inconsistently and discontinuously at $115^{\circ}C$. The scanning electron microphotograph of extruded white ginseng was uniform air cell distribution at 100oe, but pore size increased at $115^{\circ}C$ and had fine uniformity due to pore explosion. White ginseng and its extrudate were pseudoplastic. Intrinsic viscosity was lower as a result of increased die temperature. The cross-sectional expansion seems to be inconsistent and decreased due to decrease in melt viscosity at $115^{\circ}C$.

Extrusion enhances apparent metabolizable energy, ileal protein and amino acid digestibility of palm kernel cake in broilers

  • Faridah, Hanim Shakirin;Goh, Yong Meng;Noordin, Mohamed Mustapha;Liang, Juan Boo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1965-1974
    • /
    • 2020
  • Objective: This study consisted of two stages; the first was to determine the effect of extrusion and sieving treatments on the chemical properties of palm kernel cake (PKC), and accordingly, a follow-up experiment (second stage) was conducted to determine and compare the apparent metabolizable energy (AME), and protein and amino acid digestibility of extruded and sieved PKC. Methods: Two physical treatments, namely extrusion (using temperature profiles of 90℃/100℃/100℃, 90℃/100℃/110℃, and 90℃/100℃/120℃) and sieving (to 8 particles sizes ranging from >8.00 to 0.15 mm) were carried out to determine their effects on chemical properties, primarily crude protein (CP) and fiber contents of PKC. Based on the results from the above study, PKC that extruded with temperature profile 90/100/110℃ and of sieved size between 1.5 to 0.15 mm (which made up of near 60% of total samples) were used to determine treatments effect on AME and CP and amino acid digestibility. The second stage experiment was conducted using 64 male Cobb 500 chickens randomly assigned to 16 cages (4 cages [or replicates] per treatment) to the following four dietary groups: i) basal (control) diet, ii) basal diet containing 20% untreated PKC, iii) basal diet containing 20% extruded PKC (EPKC), and iv) basal diet containing 20% sieved PKC (SPKC). Results: Extrusion and sieving had no effect on CP and ash contents of PKC, however, both treatments reduced (p<0.05) crude fiber by 21% and 19%, respectively. Overall, extrusion and sieving reduced content of most of the amino acids except for aspartate, glutamate, alanine and lysine which increased, while serine, cysteine and tryptophan remained unchanged. Extrusion resulted in 6% increase (p<0.05) in AME and enhanced CP digestibility (p<0.05) by 32%, as compared to the untreated PKC while sieving had no effect on AME but improved CP digestibility by 39% which was not significantly different from that by extrusion. Conclusion: Extrusion is more effective than sieving and serves as a practical method to enhance AME and digestibility of CP and several amino acids in broiler chickens.

Study on the Relationship between Aggregation Structure and Flow Rate Depending on Extrusion Temperature at Complex Mold of (Activated Carbon/Polymer Binder) ((활성탄/고분자바인더)복합성형체의 압출온도에 따르는 응집구조 및 유량 상관성에 관한 연구)

  • Lim, Yong Gyun;Kim, Young Jun;Park, Sang Jin;Hong, Sung-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.261-265
    • /
    • 2014
  • As the need for miniaturization in water purification filter increases, the development of filter media for single filtration with multiple function was strongly required. In this study, the molded activated carbon composed of single unit was manufactured by extrusion-sintering process, and then the flow rate, density and porosity were investigated using the molded activated carbon manufactured at various extrusion temperature. We confirmed that it was possible to manufacture the single unit-molded activated carbon when the extrusion temperature was $140{\sim}230^{\circ}C$ more than $133^{\circ}C$ being of polymer binder melting point, and the optimal extrusion temperature for the molded activated carbon with maximum flow rate was $170^{\circ}C$ since the molded activated carbon had low density and high through porosity. Also we confirmed that the flow rate through the molded activated carbon was strongly dependent upon through pore porosity compared to total porosity for the molded activated carbon.

Comparison of Physicochemical Properties of Starch Acetates Prepared by Conventional, Preheat Treatment and Extrusion Process (습식법과 예열처리법 및 Extrusion 공정에 의해 제조한 초산전분의 이화학적 성질비교)

  • Kim, Chong-Tai;Ryu, Gi-Hyung;Kim, Dong-Chul;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.659-667
    • /
    • 1990
  • Starch acetates were prepared by conventional method, preheat treatment, and extrusion process through acetylation of corn starch with acetic anhydride and their physicochemical properties were investigated. The optimal conditions of the acetylation of starch by conventional method(CSA) was found that starch concentration was 30%, reaction temperature $35^{\circ}C$ and pH 8.5. With increasing the molar ratio of acetic anhydride to anhydrous glucose unit from 0.03 to 0.20, DS(Degree of substitution) value of corn starch acetate prepared at the optimum condition was increased from 0.019 to 0.080, while the acetylation efficiency was decreased from 31.6% to 20.5%. In the case of the preheated (gelatinized), then acetylated starch(PSA), DS value was increased from 0.027 to 0.04 at the fixed molar ratio of the acetic anhydride with increasing preheating temperature from $60^{\circ}C\;to\;90^{\circ}C$. The DS was low as 0.02 in the case of starch acetate prepared by extrusion process(WESA). The CSA and PSA showed lowering gelatinization temperature and enthalpy than raw corn starch with increasing DS. All of starch acetates showed the increased degree of transparency, the decreased lightness and the increased yellowness as compared to the raw corn starch. WESA showed lower apparent viscosity and more close to the characteristic of the Newtonian fluid than CSA and PSA. Intrinsic viscosity was reduced in CSA and WESA, although PSA has a slightly higher one than raw corn starch. The rate of retrogradation of the gels was retarded in all starch acetates.

  • PDF

IMPROVEMENT OF FLEXURAL STRENGTH OF BIODEGRADABLE POLYMERIC INTERNAL FIXATION DEVICE BY SOLID STATE EXTRUSION

  • Lim, Soo-Ho;Lim, Jung-Yul;Kim, Soo-Hyun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.23-26
    • /
    • 2003
  • Solid-state extrusion technique was employed for the improvement of mechanical properties of polylactic acid (PLLA) widely used as biodegradable internal fixation devices currently. Cylindrical billets were machined out from the vacuum compression-molded PLLA to have various diameters, and solid-state extrusion of the billets was performed at various drawing rates and at the extrusion temperature of $130^{\circ}C$. Throughout the whole processes the decrease in molecular weight was significantly suppressed to be about $10\%$. Flexural modulus and strength of PLLA increased up to 8.3 GPa and 221 MPa, respectively. Studies on the orientation and crystallinity of extruded PLLA could reveal the effects of billet morphology, draw ratio, and drawing rate on the flexural strengths of PLLA.

  • PDF

An Axisymmetric Finite Element Analysis of Hot Tube Extrusion Using Ceramic Dies (세라믹 금형을 이용한 열간 튜브 압출의 축대칭 유한요소해석)

  • Kang, Yeon-Sick;Yang, Dong-Yol;Chung, Soon-Kil;Lee, June-Gunn
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 1998
  • This study is concerned with the thermo-biscoplastic finite element analysis of hot tube extrusion through square dies with a mandrel. The problem is treated as a non-steady state and the ALE description is used due to abruptly turning flow at the die aperture. Since the contact heat transfer coefficient and the friction factor are required in the analysis experiments are also carried out to determine the values, In order to apply ceramics to an extrusion die the study is focussed on under-standing the characteristics of the process. The simulated results provide the useful informations such as metal flow temperature distribution stress state etc. The elastic analysis of the dies is carried out to obtain the stress state of the ceramic dies.

  • PDF

A Study on the Plastic Flow for Porthole Extrusion with Mandrel (맨드렐이 있는 포트홀 압출의 소성유동에 관한 연구)

  • Lim H. J.;Han C. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.78-81
    • /
    • 2000
  • In this study the plasic flow before welding stage in the cahamber is analyzed by FEM and experiments during the porthole extrusion process. The analysis is concerned with plastic flow in the port and welding chamber of rectangular hollow section extrusion through the porthole die with mandrell. Numerical simulation by finite element code to investigate the plastic flow is discussed for both tapered inlet and straight inlet chamber. To visualize the flow in extrusion process split dies and punches are designed and manufactred by wire EDM. Experiments are carried out by using the plasticine as a model material at room temperature. The theoretical predictions are reasonable agreements with experimental results in the welding lines and the deformed profiles.

  • PDF

A Comparison of Direct/Indirect Extrusion Process Analysis of Clad Composite Materials (층상복합재료의 직접/간접압출공정해석의 비교)

  • Kim, Jeong-In;Kwon, Hyok-Chon;Kang, Chung-Gil
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.9-19
    • /
    • 1999
  • A clad material is a different type of the typical composites which is composed of two or more materials joined at their interface surface. The advantage of clad material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneouly. This paper is concerned with the direct and indirect extrusion process of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copper-clad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and moan stress for some sheath thicknesses, die exit diameters and die temperatures.

  • PDF

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of a Hot Square Die Extrusion with Flow Guide (플로우가이드를 고려한 평금형 열간 압출의 3차원 강-점소성 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.138-144
    • /
    • 1996
  • In square die extrusion, flow guide and ide land play important roles for controlling the metal flow in die design. In the present work, the flow guide and the die land are considered for the die construction. Based on ALE description , rigid-viscoplastic finite element analysid is carried out to assess the effects of process and die design parameters. The thermal state affects greatly the product quality in hot extrusion. in the present work, the temperature distribution is also analyzed in theframwork of rigid-viscoplastic finite element computation. As a computational example, hot square die extrusion with flow guide and die land has been analyzed for the profile of a H section.

  • PDF

An Experimental Study Using Plasticine for the Hot Extrusion Processes of Regular Square Sections throuth Square Dies (플라스티신을 이용한 정사각형재의 열간 평금형 압출공정에 관한 실험적 연구)

  • 변삼수;한철호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.187-191
    • /
    • 1995
  • An experimental study to analyze thd hot extrusion processes of regular square section through square dies is carried out by using plasticine as a model material at room temperature. The experimental setup for the extrusion of squared section from round billets through square dies is designed and manufactured. In order to visullize the plastic flow in the extrusion process the technique of gridding on the planes of the sysmmetries and a stacking the desks with different colors are employed. Velocity fields on the symmetry planes are obtained by using grid distortion.

  • PDF