• Title/Summary/Keyword: Extrusion Temperature

Search Result 474, Processing Time 0.033 seconds

Influence of initial ECAP passes on the anisotropic behavior of an extruded magnesium alloy (초기 등통로각압출 공정 횟수가 압출된 마그네슘 합금의 이방성에 미치는 영향)

  • Bae, Seong-Hwan;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, a transversely isotropic behavior of AZ31 Mg alloy produced by equal-channel angular pressing (ECAP) process was investigated through tensile test and microstructure observation. The effects of initial ECAP pass number on the anisotropic behavior and mechanical properties of the Mg alloy are evaluated after conventional direct extrusion test, which are carried out at a temperature of $200^{\circ}C$. As a result of the tensile test in three directions ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ to the extrusion direction of the sheet) at room temperature, elongation of as-extruded AZ31 alloy(ECAP for 0 pass) showed an unusual anisotropic behavior depending on the extrusion direction although the yield strength and tensile strength are similar to the ECAPed AZ31 alloy. After ECAP for 4 passes at $200^{\circ}C$, microstructural observations of ECAPed magnesium alloy showed a significant grain refinement, which is leading to an equiaxed grain structure with average size of $2.5{\mu}m$. The microstructures of the extruded billet are observed by the use of an electron back-scattering diffraction (EBSD) technique to evaluate of the influence on the grain refinement during extrusion process and re-crystallization mechanism of AZ31 Mg alloy.

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Effect of Process Variables and Packaging on Vitamin C Content of Extruded Cornstarch Matrix (압출성형 옥수수 전분 매트릭스 내부의 비타민 C 함량에 미치는 압출성형 공정변수와 포장방법의 영향)

  • Han, Jae-Yoon;Kim, Mi-Hwan;Park, Jong-Hwan;Kim, Seok-Joong;Park, Hee-Yong;Koksel, Hamit;Ryu, Gi-Hyung
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.451-456
    • /
    • 2007
  • The vitamin C content in extruded comstarch matrix was shown to depend on extrusion process variables (barrel temperature and water content), the packaging method, and the storage period. In addition, loss rates of vitamin C under different processing conditions were calculated. Extrusion process variable were barrel temperature ($80^{\circ}C,\;90^{\circ}C,\;100^{\circ}C$ and $110^{\circ}C$), and water content (25% 30% both w/w). The vitamin C content decreased as barrel temperature increased from $80^{\circ}C$ to $110^{\circ}C$ and water content increased from 25% to 30% when either LDPE plastic film packaging or ON film vacuum packaging were employed. As barrel temperature and water content increased, vitamin C decreased in comstarch packed in either LDPE film or ON film. As temperature increased, vitamin C loss rate increased under both packaging conditions, but the loss tate was only 50% of the LDPE film packaging rate when ON film vacuum packaging was used. In conclusion, the higher the temperature, and the greater the water content, the less vitamin C was inactivated during extrusion cooking, although the loss rah of vitamin C became faster as temperature and water content rose. In conclusion, extrusion process could be applied for making vitamin C matrix to extend vitamin C preservation.

Chemical Compositions and Antioxidant Activity of Extract from a Extruded White Ginseng (압출성형 백삼추출물의 화학적 조성 및 항산화 활성)

  • Son, Hyun-Jung;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.946-950
    • /
    • 2009
  • Chemical components and antioxidative activities of white ginseng, red ginseng and extruded white ginseng (EWG) were evaluated. Extrusion condition was 20% moisture content, 100 and $140^{\circ}C$ barrel temperature. The results showed that total sugar and acidic polysaccharide contents of white ginseng powder were increased after extrusion treatment of which EWG at $140^{\circ}C$ barrel temperature had higher value than EWG at $100^{\circ}C$ barrel temperature. Free radical scavenging activity of EWG at $140^{\circ}C$ barrel temperature was 80.2 and 45.6% respectively. The butanol fraction of polyphenolic compound and acidic polysaccharide were $27.2{\pm}0.1\;mg/g$ and $217.6{\pm}0.7\;mg/g$, respectively. The ginsenosides were quantified by HPLC and the yield of ginsenoside-Rg3s and Rg3r were achieved by extrusion process.

Analysis of Microstructures and Mechanical Properties of Billet and Extrudate according to Heat Treatment for the Extrusion of 7075 alloy (7075 합금의 압출에서 원소재 빌렛과 압출재의 열처리에 따른 미세조직 및 기계적 특성 분석)

  • Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.5
    • /
    • pp.232-238
    • /
    • 2020
  • Heating experiments using the 7075 aluminum alloy in the state of billet and extrudate have been performed to investigate the pertinent ranges of working temperatures and holding times for the application to the various automobile parts. The 7075 specimens from raw billet of 152 mm in diameter and 400 mm in length prior to extrusion were used for heating with a holding time of 10 minutes at temperatures between 380℃ and 550℃. Then, an extrusion process using the billet has been fulfilled at 380℃ with extrusion speed of 0.8 mm/min to get an plate-type extrudate of 75 mm in width and 4.2 mm in thickness. The samples from the extrudate were subjected to heating experiments at temperatures between 380℃ and 440℃ with holding times such as 10 min, 30 min, 60 min and 120 min at each heating temperature. The microstructures were investigated on the optical and EBSD micrographs. The hardness measurement and the tensile test have been performed to investigate the effect of the heat treatment on the mechanical property. The results showed for the 7075 extrusion process that the safe heating of billet can be performed below 450℃ and the extrusion can be done safely up to 400℃.

Analysis and Design of a Forming Porcess for Combined Extrusion with Aluminum AIIoy 7075 (알루미늄 7075 복합압출재에 대한 공정해석 및 설계)

  • 김진복;변상규
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.446-455
    • /
    • 1997
  • A Combined extrusion operation consists of forward and backward extrusion forming and it is possible to make the process be simple by employing it. But the metal flow pattern induced by the operation is hard to analyze accurately because the flows are non-steady, which have at least two directions dependent upon each other. So engineers in the industrial factories had conducted the two extrusion operations separately. A new process was designed by the industrial expert for forming of an alu-minum preform using the combined extrusion operation. In this study, experiments and finite element analysis was carried out to determine the process parameters. Through the preliminary experiment, it was shown that warm forming condition was more desirable than cold or hot ones. And optimal shape of initial billet could be also determined. From the compatibility test, bonde-lube was chosen as the optimal lubricant and 20$0^{\circ}C$ as the material temperature by the inspection of micro-structure. The operation was simulated by the rigid-plastic finite element method to examine the metal flow. Disap-pearing of dead metal zone was observed as the punch fell down and desirable shape was obtained from the one operation. As a result of this study, 7 operations could be reduced and 225% of material saved.

  • PDF

A Study on Mold Filling and Fluidity of Mg Alloy in Thixocasting (Mg합금의 반용융가압주조시 주조조건에 의한 금형충전성 및 유동성 변화)

  • Jung, Woon-Jae;Kim, Ki-Tae;Hong, Chun- Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.184-193
    • /
    • 1995
  • Effects of process parameters during thixocasting, such as solid volume fraction, mold temperature and extrusion ratio, on the mold filling behaviour and fluidity of Mg alloy(AZ91D) have been investigated. The semi-solid ingot held for 60 minutes at the semi-solid temperature range did not contain the equilibrium volume fraction of solid as expected from the phase diagram. Therefore, in order to obtain the desired solid fractions, and to suppress the exaggerated grain growth during heating, it was required to heat the ingot rapidly up to the temperature $10^{\circ}C$ higher than the semi-solid temperature suggested from the phase diagram for a specific volume fraction of solid. The experimental results show that mold filling behaviour and fluidity can be improved with the use of the higher mold temperature and the lower volume fraction of solid, but remain nearly unaffected by the change of extrusion ratio.

  • PDF

Rheological properties and crystallization kinetics of polypropylene block copolymer with repeated extrusion

  • Sung Yu-taek;Seo Won Jin;Kim Jong Sung;Kim Woo Nyon;Kwak Dong-Hwan;Hwang Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2005
  • Rheological properties and crystallization kinetics of the polypropylene (PP) block copolymer and recycled PP block copolymer were studied by advanced rheometric expansion system (ARES), differential scanning calorimetry (DSC), and optical microscopy. In the study of the dynamic rheology, it is observed that the storage modulus and loss modulus for the PP block copolymer and recycled PP block copolymer did not change with frequency. In the study of the effect of the repeated extrusion on the crystallization rate, half crystallization time of the PP samples was increased with the number of repeated extrusion in isothermal crystallization temperature ($T_c$). From the isothermal crystallization kinetics study, the crystallization rate was decreased with the increase of the number of repeated extrusion. Also, from the result of Avrami plot, the overall crystallization rate constant (K) was decreased with the increase of the number of the repeated extrusion. From the study of the optical microscopy, the size of the spherulite of the PP samples did not change significantly with the number of repeated extrusion. However, it was clearly observed that the number of the spherulite growth sites was decreased with the number of repeated extrusion. From the results of the crystallization rate, isothermal crystallization kinetics, Avrami plots, and optical microscopy, it is suggested that the crystallization rate of the PP block copolymer is decreased with the increase of the number of repeated extrusion.

Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die (포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석)

  • Lee, J. M.;lee, S. K.;Kim, B. M.;Jo, H. H.;Jo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF

EVALUATION OF APICAL PLUG MATERIALS USED FOR THE CONTROL OF EXTRUSION OF HIGH-TEMPERATURE THERMOPLASTICIZED GUTTA-PERCHA (수종의 apical plug 재료의 근단 폐쇄성에 관한 실험적 연구)

  • Hur, Eun-Jung;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.205-216
    • /
    • 1994
  • The purpose of this study is to evaluate of apical plug materials for the contral of extrusion and sealing ability of high-temperature thermoplasticized gutta-percha in plastic root canal blocks. Seventy seven plastic blocks with canal preformed were instrumented with # 50K file 1 mm beyond apical foramen. Blocks were randomly divided into 5 groups of 15 blocks each. Group 1 was filled by high-temperature thermoplasticized gutta-percha only. The another 4 groups were placed with apical plug materials each other and then remaining space was back filled with high temperature thermoplasticized gutta-percha Apical plug materials were used as follows; Group 2: Thermoplasticized gutta-percha (Thermoplasticized gutta-percha group) Group 3 :. Calcium hydroxide powder (Calcium hydroxide group) Group 4 : Silver point (Silver point group) Group 5 : Gutta-percha cone softened by chloroform (Gutta-percha cone group) All the blocks were stored in 100 % relative humidor at room temperature for 14 days. Filling material extruded was removed carefully and then weighed in analytic balance. Each block was placed in centrifuge tube filled with India ink, and then centrifuged for 20 minutes at 3,000 rpm. Apical leakage was measured from the apical foramen to the most coronal level of dye leakage in millimeter by two examiners under a stereoscope. The data were analysed statistically by Student's t-test The obtained results were as follows; 1. The amounts of material extruded through the foramen decreased in all of groups used apical plug materials (P<0.01). 2. Silver point group and gutta-percha cone group were similar linear leakage to high-temperature thermoplasticised gutta-percha technique only (P>0..5). 3. Calcium hydroxide group and thermoplasticized gutta-percha group showed more liner leakage than high-temperature thermoplasticized gutta-percha only (P<0.01, P<0.05). 4. High-temperature thermoplasticized gutta-percha technique with silver point and gutta-percha cone as apical plugs showed less linear leakage and less extrusion of filling material.

  • PDF