• Title/Summary/Keyword: Extrusion Ratio

Search Result 252, Processing Time 0.034 seconds

Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process (반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정)

  • Kang, Chung-Gil;Kang, Sung-Soo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

An Influence of the Frictional Condition on Material Flow in Forward/Backward Combined Extrusion Process (전/후방 복합 압출공정에서 마찰조건이 재료 유동에 미치는 영향)

  • Kim, M.T.;Noh, J.H.;Hwang, B.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.433-436
    • /
    • 2009
  • This study is concerned with an effect of frictional condition in a forward/backward combined extrusion process. Generally, the material flow of the billet is influenced by the corners of the die cavity, the ratio in reduction in area, and thickness ratio of backward can thickness to forward can thickness. In addition, the frictional condition in contact area between the billet and the punch/die also affect the material flow. This paper investigated the effect of frictional condition for variable friction factors. The FEM simulation has been carried out in order to examine the effect of frictional condition. Deformation patterns and flow characteristics were examined in terms of design parameters such as extruded length ratio etc. Die pressure exerted on the die-workpiece interface is calculated by the simulation results and analyzed for safe tooling. Therefore the numerical simulation works provide a combined extrusion process of stable cold forging process planning to avoid the severe damage on the tool.

  • PDF

Unsteady State Analysis of Al Tube Hot Extrusion by A Porthole Die (포트홀 다이에 의한 Al 튜브의 비정상상태 열간 압출 공정 해석)

  • 조형호;이상곤;박종남;김병민
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.311-318
    • /
    • 2001
  • Porthole die extrusion has a great advantage in the forming of long hollow section tubes. It is difficult to produce long hollow section tubes with complicated section by the conventional extrusion process with a mandrel on the stem Because of the limit of the length of mandrel and the complexity of cross section. Porthole die extrusion is affected by many parameters, such as extrusion ratio, extrusion speed, die geometry, porthole number, bearing length etc. Up to now, most of studies about porthole die extrusion have been investigated by experiments or steady state FE-analysis. However, in this paper, porthole die extrusion is analysed by the unsteady state 3D FE-simulation. And the result of unsteady state analysis is compared with the experimental result. Also, the surface state of extruded tubes are examined for the various process conditions.

  • PDF

Metal Flow and Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion (직접압출에 의한 Cu-Al 층상 복합재료 봉의 금속유동과 계면접합)

  • Yun, Yeo-Kwon;Kim, Hee-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2001
  • Composite materials consists of two or more different material layers. The usefulness of clad metal rods forms the possibilities of combination of properties of different metals. Copper clad aluminum composite materials are being used for economic and structural purpose. In this study, composite billet consists of commercially pure copper and aluminum(A6061) and experimental conditions consist of the combinations of clad thickness, extrusion ratio, and semi-cone angle of die. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios, semi-cone angles of die, and composition rate of Cu:Al.

  • PDF

The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method (유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석)

  • Jung, Byung-Gil;Bae, Jin-Woo;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

A Study on the Elongation of Polymer Extrusion Film (고분자압출필름의 연신에 관한 연구)

  • Choi, Man-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.660-665
    • /
    • 2014
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the elongation of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film elongation of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance(ANOVA) for maximization of the breathable film elongation influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that stretching ratio were the most influential factor on the film elongation. The best results of film elongation were obtained at lower stretching ratio.

Effect of the Extrusion Ratios on Fiber Breakage and Orientation in Hot Extrusion Process in Metal Matrix Composites (금속복합재료의 열간압출공정에 있어서 압출비가 섬유의 파단 및 배향에 미치는 영향)

  • Kang, C.G.;Kang, S.S.;Kim, B.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1740-1750
    • /
    • 1993
  • The aluminar short fiber reinforced composite materials for hot extrusion were fabricated by semi-solid stirring method, and extruded at extrusion temperature $400^{\circ}C$ with various extrusion ratio. The hot extrusion load of volume fraction 15% metal matrix composites and base alloy Al7075 has been compared. The fiber length distribution, fiber breakage and fiber orientation are investiged to know the fiber behaviour in before and after hot extrusion. The tensile strength of the hot extruded billet are experimentally determined for different of extrusion ratios, and compared with theorically calculated strength.

Effect of Die and Lubrication in Fine Wire Cold Hydrostatic Extrusion (극세선 냉간 정수압 압출에서 금형과 윤활의 영향)

  • Na K. H.;Park H. J.;Kim S. S.;Yoon D. J.;Choi T. H.;Kim E. Z.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.225-230
    • /
    • 2002
  • As in most metal forming processes, die and lubrication are of vital importance in hydrostatic extrusion. An efficient die design and lubrication system selection reduce the pressure required for a given reduction ratio by lowering friction at the billet-die interface. In contrast to the conventional macroscopic extrusion, fine-wire fabrication requires higher extrusion pressure and effect of friction is much more significant. Forming fine Au, Ag, and Cu wire with hydrostatic extrusion process in cold condition, the effect of extrusion die angle, lubrication and billet's initial diameter was studied.

  • PDF

A Study on Extrusion Process of Cylindrical Product with Helical Fins Using Rotating Extrusion Die (회전압출다이를 사용한 헬리컬 핀붙이 원형단면 제품의 압출가공에 관한 연구)

  • Park S. M.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.444-451
    • /
    • 2005
  • A new extrusion process of the circular section product with helical fins could be developed by rotating extrusion die. The twisting of extruded product is caused by the twisted conical die surface connecting the die entrance section and the die exit section linearly. But, until now, because the process has used fixed extrusion die, it needs high pressure in order to twist billet and form fin shape on the surface of billet. So, during extruding billet, in order not to twist billet, the extrusion die is needed to rotate itself instead of twisting of billet. It is known that it is possible to reduce extrusion load of product with helical fins by analysis and experiments using rotating die. And it is known that, through the extrusion load analysis by $DEFORM^{TM}-3D$ software, optimal rotational velocity of rotating die can be obtained according to reduction ratio of area and twisted angle of die. And experiments and analysis using rotating extrusion die show that the twisted angle of product can be controlled by twisted angle of extrusion helical die and the rotational velocity of extrusion helical die.