• 제목/요약/키워드: Extrusion Angle

검색결과 109건 처리시간 0.023초

압출용 2축 스크류의 형상설계 및 비토크 특성 (Shape Design and Specific Torque Characteristics of the Extrusion Twin Screw)

  • 최부희;최상훈
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.185-193
    • /
    • 2003
  • The modular self-wiping co-rotating twin screw extruder (SWCOR) has become the most important of twin screw machines. Screw design is one of the most important factors in determining performance of screw extruder. The screw flight and screw channel geometry of SWCOR is determined by the screw diameter, centerline distance, helix angle, and flights number. The maximum allowable throughput rate on a twin screw extruder is determined by a combination of free volume and available specific torque. In this paper we designed geometrical parameters of extruder screw and presented optimal specific torque value in K=1.55, and then developed screw design program for the screw cutting by the use of JAVA API in the twin screw extruder.

상계해법에 의한 원형빌렛으로부터 타원 단면을 가진제품의 압출가공의 비틀림 해석 (An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of Elliptical Shapes from Round Billet)

  • 김한봉;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.210-213
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by axial distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product increase with the die twisting angle and the aspect ratio of product and friction condition and reduction area and show that angular velocity increases with the decreases in die length.

  • PDF

대변형 탄소성 접촉문제에 관한 연구 (A Study on the Elastic-Plastic Contact Problem for Large Deformation)

  • 전병희;김동원
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

열교환기용 BAS111합금 고주파유도용접관에서 인발조건이 기계적 특성에 미치는 영향 (Effects of Drawing Parameters on Mechanical Properties in High Frequency Induction Welded Tubes of BAS111 Alloy for Heat-exchangers)

  • 국진선;김낙찬;송중근;전동태
    • Journal of Welding and Joining
    • /
    • 제22권4호
    • /
    • pp.65-72
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS111 welded tubes. The BAS111 aluminium alloy tubes with 25.4mm in external diameter and 1.5mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle 6.8$^{\circ}$ and power input 50㎾. With increasing the reduction of area (1.6, 5.8, 11.5, 14.2, 18.5, 22.5%) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction was estimated about 15% because of the work hardening of welds.

Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화 (Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy)

  • 나상수;김용호;손현택;이성희
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

요추부 추간판 탈출 정도와 SLR, valsalva test의 관계 (A Study of the Relationship between Straight Leg Raising, Valsalva Test and Size, Position of Lumbar Disc Herniation)

  • 엄태웅;추원정;이차로;김호준;이명종
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.129-138
    • /
    • 2013
  • Objectives : This study investigated the relationship between straight leg raising(SLR), valsalva test and size, position of lumbar disc herniation. Methods : We took SLR and valsalva test on 105 patients with lumbar disc herniation. According to the result of MRI findings, this study classified three groups of 105 patients with lumbar disc herniation, bulging, protrusion and extrusion. According to the position of lumbar disc herniation, 72 patients that were diagnosed protrusion and extrsuion were sorted 4 groups, lateral, lateral postero-lateral, central postero-lateral, central. The association size, position of lumbar disc herniation and SLR, valsalva test were analysed. Results : The bigger size of disc herniation, the more positive result of SLR and valsalva test, the lower angle of SLR test. There was not significant association between the position of lumbar disc herniation and the angle of SLR test. Conclusions : The SLR and valsalva test is an useful physical examination to speculate about the degree of lumbar disc herniation.

중년 여성 복부 돌출 정도에 따른 토르소 형태 분류 (Classification of Torso Shape According to Abdominal Protrusion of Middle-Aged Women)

  • 도월희;이정은
    • 한국의류산업학회지
    • /
    • 제23권2호
    • /
    • pp.226-236
    • /
    • 2021
  • The purpose of this study was to classify the torso shape based on abdominal protrusion caused by changes in the physical characteristics of middle-aged women. This study analyzed 3D shape data of 401 females ranging in age from 40 to 59 years who participated in the 6th Size Korea project. Based on the Size Korea 3D measurement standard, 27 additional items such as height, protrusion, and angle were measured in the 3D scan data. Nine factors were extracted from the analysis of constituent factors of the torso: "vertical size of torso," "flatness and protrusion of abdomen," "torso front extrusion," "upper body height," "bust size and flatness," "size of belly and angle of lower abdomen," "hip length," "hip flatness," and "horizontal size of bust." As a result of the cluster analysis using these nine factors, the torsos of middle-aged women were classified into three types. Type 1 has upper abdominal deposition with a small and long upper body and an advanced abdomen; type 2 has lower abdominal deposition with a small and short torso and a small belly and hip flexion; and type 3 has central abdominal deposition with a big and long torso, large breasts, and protruding abdo¬men front. The middle-aged women were mostly distributed in Type 2. The above results will be useful as basic data for the development of clothing with improved fit to accommodate the changed physical characteristics of middle-aged women.

파라-페닐렌 다이이소시아네이트의 사슬 연장이 PLA/PBT 블렌드의 결정화 거동과 생분해성에 미치는 영향 (Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends)

  • 김명욱;홍성민;이두진;박광석;윤재륜
    • Composites Research
    • /
    • 제22권3호
    • /
    • pp.18-28
    • /
    • 2009
  • PPDI(para-phenylene diisocyanate)와의 반응 압출을 통해 PLA(poly(lactic acid))/PBT(poly(butylene terephthalate)) 블렌드를 제조하였다. DSC, WAXD, 접촉각 측정기 및 esterase를 함유한 완충 용액을 이용하여 결정화 거동과 생분해도를 연구하였다. PLA 고분자 매트릭스에 PBT를 첨가하면 PLA 상의 냉결정화가 일어났고, PBT와 PPDI가 동시에 PLA와의 반응에 참여했을 때 PLA 상의 결정화 속도가 크게 가속되었다. 그러나 PPDI에 의한 사슬 연장은 PLA와 PBT 상의 결정화도와 친수성을 감소시켰다. 결정화도와 친수성은 PLA/PBT 블렌드의 생분해도에 있어 크게 영향을 미치지 못했다. 하지만 PLA/PBT 블렌드에서 PLA와 PBT 사이의 상분리는 효소의 가수분해에 노출될 수 있는 계면적을 증가시켰고, 이로 인해 PLA 상의 생분해 속도를 향상시켰다. 대조적으로 PPDI와의 반응에 의한 PLA와 PBT 매트릭스 사이의 계면접착력의 향상은 효소에 노출된 면적을 감소시켜 PLA 상의 생분해 속도를 떨어뜨렸다.

Structural and Dielectric Studies of LLDPE/O-MMT Nanocomposites

  • Zazoum, Bouchaib;David, Eric;Ngo, Anh Dung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권5호
    • /
    • pp.235-240
    • /
    • 2014
  • Nanocomposites made of linear low density polyethylene (LLDPE) and organo-modified montmorillonite (O-MMT) were processed by melt compounding from a commercially available premixed LLDPE/nanoclay masterbatch, at different nanoclay loadings, by co-rotating twin-screw extruder. The morphological and dielectric properties of LLDPE/O-MMT nanocomposites were investigated to understand the structure-dielectric properties relationship in the nanocomposites. The microstructures of the materials were characterized by wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Initial findings by FTIR spectroscopy characterization indicated the absence of any chemical interaction between LLDPE and nanoclay during the extrusion process, while DSC showed that a 1% wt loading of nanoclay particles increased the degree of crystallinity of the nanocomposites samples. On the other hand, XRD, SEM, TEM and AFM indicated that nanoclay layers were intercalated or exfoliated in the LLDPE matrix. A correlation between the structure and dielectric properties of LLDPE/O-MMT nanocomposites was found and discussed.

전.후방 캔 압출공정의 성형특성 연구 (A Study on the Forming Characteristics of Forward and Backward Extrusions)

  • 심지훈;최호준;옥정한;함병수;황병복
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.86-92
    • /
    • 2005
  • In this paper a forward-backward can extrusion process are analyzed by using rigid-plastic FEM simulation. FEM simulation is conducted to investigate forming characteristics such as deformation modes fur different process parameters. Design parameters such as thickness ratio, punch angle, friction factor and diameter ratio are selected to study the effect of them on the pattern of material flow. The analysis is focused mainly on the influences of the design factors on deformation pattern in terms of forming load, extruded length ratio and volume ratio. It is known for the simulation that the forming load, the length ratio and the volume ratio increase as the thickness ratio (TR), the wall thickness in forward direction to that in backward direction, decreases. The various punch angles have slight influence on the forming load. length ratio and volume ratio. However friction factor have little effect on the forming characteristics such as the forming load, volume ratio and so on. In addition the forming load increases as diameter ratio (DR), the outer diameter of a can in forward direction to that in backward direction, increases. Furthermore the extruded length ratio is lowest with a certain value of DR=0.85 among diameter ratios. Pressure distribution exerted on the die-material interface is illustrated schematically.