• Title/Summary/Keyword: Extreme load

Search Result 316, Processing Time 0.025 seconds

Determination of CSOs Treatment Capacity considering the Pollution Load (오염부하량을 고려한 월류수 처리시설 규모 결정)

  • Kim, Joong Hoon;Yoo, Do Geun;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3270-3278
    • /
    • 2014
  • Many researches has been conducted as extreme rainfall in hydrology and extreme rainfall analysis is not proper for determination of CSOs treatment capacity. In this study, runoff is calculated by tranformation from rainfall to runoff according to Interevent Time Definition. The capacity of sewage treatment plant is designed by 3 times of DWF(Dry Weather Flow) and the efficiency of present sewage treatment plant is very low becauseat at present. Also, The sewage treatment plant can not control CSOs. In this research, the pollution load is calculated by EMC(Event Mean Concentration) and pollution concetration of total runoff is a standard deciding suitablility of present sewage treatment plant. Finally, CSOs treatment capacity is determinated considering pollution load.

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.

Development of Foil Journal Bearing for Turbo Machinery (터보기기용 포일 저널 베어링 개발)

  • Kim, Kyeong Su;Lee, Ki Ho;Kim, Seung Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.475-481
    • /
    • 2001
  • Foil bearings have been successfully used for small high speed rotors, such as ACM(Air Cycle Machine), turbo charger, turbo compressor, high speed motor, etc. Recently advanced researches are concentrated on the high load capacity and the extreme temperature foil bearings to extend the application boundary. Some bearings are already adopted into cryogenic machines and micro gas turbines. In this paper, a foil journal bearing designed for high load capacity, which is under development, is introduced. The bearing is for the turbo refrigerator which has a rotor of 18${\~}$25 kgf rotating at 23,000${\~}$38,000 rpm. This application is well beyond conventional spectrum of foil bearings because the rotor is relatively heavy and the rotational speed is low. Therefore, the development is challenging. The foil bearing is a bump type, the size is 60mm in diameter and 50mm in length, the operating fluid is air and rotational speed is 26,000 rpm. In-house software was developed and used for bearing design. Tested maximum load capacity is 80kgf, 0.62 in terms of load capacity coefficient, and testing is being continued.

  • PDF

Performance-based design of tall buildings for wind load and application of response modification factor

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.153-164
    • /
    • 2020
  • In the design of buildings, lateral loading is one of the most important factors considered by structural designers. The concept of performance-based design (PBD) is well developed for seismic load. Whereas, wind design is mainly based on elastic analysis for both serviceability and strength. For tall buildings subject to extreme wind load, inelastic behavior and application of the concept of PBD bear consideration. For seismic design, current practice primarily presumes inelastic behavior of the structure and that energy is dissipated by plastic deformation. However, due to analysis complexity and computational cost, calculations used to predict inelastic behavior are often performed using elastic analysis and a response modification factor (R). Inelastic analysis is optionally performed to check the accuracy of the design. In this paper, a framework for application of an R factor for wind design is proposed. Theoretical background on the application and implementation is provided. Moreover, seismic and wind fatigue issues are explained for the purpose of quantifying the modification factor R for wind design.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Extreme wind speeds from multiple wind hazards excluding tropical cyclones

  • Lombardo, Franklin T.
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.467-480
    • /
    • 2014
  • The estimation of wind speed values used in codes and standards is an integral part of the wind load evaluation process. In a number of codes and standards, wind speeds outside of tropical cyclone prone regions are estimated using a single probability distribution developed from observed wind speed data, with no distinction made between the types of causal wind hazard (e.g., thunderstorm). Non-tropical cyclone wind hazards (i.e., thunderstorm, non-thunderstorm) have been shown to possess different probability distributions and estimation of non-tropical cyclone wind speeds based on a single probability distribution has been shown to underestimate wind speeds. Current treatment of non-tropical cyclone wind hazards in worldwide codes and standards is touched upon in this work. Meteorological data is available at a considerable number of United States (U.S.) stations that have information on wind speed as well as the type of causal wind hazard. In this paper, probability distributions are fit to distinct storm types (i.e., thunderstorm and non-thunderstorm) and the results of these distributions are compared to fitting a single probability distribution to all data regardless of storm type (i.e., co-mingled). Distributions fitted to data separated by storm type and co-mingled data will also be compared to a derived (i.e., "mixed") probability distribution considering multiple storm types independently. This paper will analyze two extreme value distributions (e.g., Gumbel, generalized Pareto). It is shown that mixed probability distribution, on average, is a more conservative measure for extreme wind speed estimation. Using a mixed distribution is especially conservative in situations where a given wind speed value for either storm type has a similar probability of occurrence, and/or when a less frequent storm type produces the highest overall wind speeds. U.S. areas prone to multiple non-tropical cyclone wind hazards are identified.

Assessment and Improvement of Snow Load Codes and Standards in Korea (한국의 적설하중 기준에 대한 평가 및 개선방안)

  • Yu, Insang;Kim, Hayong;Necesito, Imee V.;Jeong, Sangman
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1421-1433
    • /
    • 2014
  • In this study, appropriate probability distribution and parameter estimation method were selected to perform snowfall frequency analysis. Generalized Extreme Value (GEV) and Probability Weighted Moment Method (PWMM) appeared to be the best fit for snowfall frequency analysis in Korea. Snowfall frequency analysis applying GEV and PWMM were performed for 69 stations in Korea. Peak snowfall corresponding to recurrence intervals were estimated based on frequency analysis while snow loads were calculated using the estimated peak snowfall and specific weight of snow. Design snow load map was developed using 100-year recurrence interval snow load of 69 stations through Kriging of ArcGIS. The 2009 Korean Building Code and Commentary for design snow load was assessed by comparing the design snow loads which calculated in this study. As reflected in the results, most regions are required to increase the design snow loads. Thus, design snow loads and the map were developed from based on the results. The developed design snow load map is expected to be useful in the design of building structures against heavy snow loading throughout Korea most especially in ungaged areas.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade (1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석)

  • Cho Bong-Hyun;Lee Chang-Su;Choi Sung-Ok;Ryu Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF