• Title/Summary/Keyword: Extreme climate

Search Result 534, Processing Time 0.019 seconds

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Communities' Perception of the Effect of Ecosystem Services on the Forest Rehabilitation of Abandoned Mine Areas: A Case Study in Taebaek-si and Jeongseon-gun (강원도 폐광산 산림복구지의 지역사회 생태계서비스 인식조사: 태백시 및 정선군을 중심으로)

  • Bohwi Lee;Dawou Joung;Jihye Kim;Gwan-in Bak;Hakjun Rhee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.118-130
    • /
    • 2024
  • Rehabilitation of mining areas can reduce damage to ecosystems. However, the effects of rehabilitation on ecosystem services (ESs) and its contribution to local communities are not well known. Thus, the aims of this study were to clearly identify the ES beneficiaries affected by mining activities, to determine how the beneficiaries profit from surrounding areas in cooperation with local stakeholders, and to manage the rehabilitation areas for the ESs that the beneficiaries want. This study chose 18 ESs (4 provisioning, 7 regulating, 5 cultural, and 2 habitat services) based on The Economics of Ecosystems and Biodiversity. A semi-structured questionnaire survey using an 11-point Likert scale was conducted among 87 community residents to investigate social awareness and identify key ESs. The survey results from two local communities showed high awareness and demands mainly on cultural (mental and physical health, aesthetic appreciation, and recreation) and regulating services (local climate and air quality, and moderation of extreme events). These services were related to the daily lives of residents in local communities, provided positive benefits, and potentially improved the residents' future livelihoods. However, the average questionnaire scores were limited to 6-7 points, indicating that the benefits to local communities were meager. The residents' awareness of provisioning service was negative, even if it provided goods and profit opportunities. This indicated a disconnection between local communities and provisioning services due to forest rehabilitation that did not consider local communities that traditionally relied on specific provisioning services before the onset of mining activities. Future forest rehabilitation in abandoned mine areas must consider the welfare of local communities for sustainable use of rehabilitated forests and enhancing ESs. In this study, only a qualitative evaluation based on frequency analyses was conducted. The quantification and valuation of key ESs are warranted in the future to promote ESs from forest rehabilitation in abandoned mine areas. The study results would be useful for developing site-specific ES promotion strategies for reforesting mine areas.

Developing domestic flood resilience indicators and assessing applicability and significance (국내 홍수회복력 지표 개발과 적용성 및 중요도 평가)

  • Kim, Soohong;Jung, Kichul;Kang, Hyeongsik;Shin, Seoyoung;Kim, Jieun;Park, Daeryong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.8
    • /
    • pp.533-548
    • /
    • 2024
  • Due to climate change with extreme weather events, occurrences of unprecedented heavy rainfall have become more frequent. Since it is difficult to perfectly predict and prevent flood damages, the limitation of traditional prevention-centered approaches has come a issue. The concept of "resilience" has therefore been developed which emphasizes the ability to swiftly recover from damages to previous states or to even better conditions. In this study, we 1) developed a total of 20 domestic flood resilience indicators based on the 4R principles (Redundancy, Robustness, Rapidity, Resourcefulness), 2) conducted applicability evaluations targeting specific disaster-prone areas, and 3) assessed the importance of each indicator through Analytic Hierarchy Process (AHP) analysis with flood-related experts. To confirm the suitability of the developed flood resilience indicators, multicollinearity analysis was performed, and the results indicated that all 20 indicators had tolerance limits above 0.1 and Variance Inflation Factors (VIF) below 10, demonstrating suitability as factors. Furthermore, evaluations of proposed indicators were carried out targeting disaster-prone areas in 2022(21 areas), and AHP analysis was utilized to determine the relative importance of each indicator. The analysis revealed that the importance of each indicator was as follows: Robustness 0.46, Rapidity 0.22, Redundancy 0.17, and Resourcefulness 0.16, with Robustness exhibiting the highest importance. Regarding the sub-indicators that had the greatest influence on each 4R component, river embankment maintenance emerged as the most influential for Robustness, healthcare services for Rapidity, fiscal autonomy of local governments for Resourcefulness, and drainage facilities for Redundancy.